Potential development and electron energy confinement in an expanding magnetic field divertor geometry

被引:2
作者
Gupta, S. [1 ]
Yushmanov, P. [1 ]
Barnes, D. C. [1 ]
Dettrick, S. A. [1 ]
Onofri, M. [1 ]
Tajima, T. [1 ]
Binderbauer, M. [1 ]
TAE Team [1 ]
机构
[1] TAE Technol Inc, 19631 Pauling, Foothill Ranch, CA 92610 USA
关键词
PLASMA; SIMULATION;
D O I
10.1063/5.0150490
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The formation of electrostatic potential in an expanding magnetic field divertor is numerically simulated using a kinetic model. As theoretically expected, the electrostatic potential is formed in the expanding magnetic field, which, in combination with the Debye potential near target walls, repels electrons back and balances electron and ion currents. Going beyond the existing theoretical description of the pre-sheath potential formation limited to the asymptotically low electron flow (u(e) << v(Te)), we demonstrate the limit of applicability of asymptotic theory and study pre-sheath potential in practically important range of electron flow [0 < I-e < 2I(sat), where I-sat = en root(T-e + T-i/m(i) is the ion saturation current]. Results of the asymptotic theory are fully reproduced at the low side of this range (I-e << I-sat), whereas at high electron current range I-e similar to I-sat, the pre-sheath potential substantially decreases. The formation of the pre-sheath potential minimizes the interaction of plasma electrons with the material walls and reduces the Debye sheath potential. Reducing the Debye potential forms favorable conditions for eliminating arcing and cold electron emission from the walls. In these favorable conditions, electron thermal losses at the wall could be reduced to minimal theoretical limit of similar to 5 - 8T(e) per lost ion.
引用
收藏
页数:7
相关论文
共 24 条
  • [1] Akasofu S.-I., 1979, AURORA BOREALIS AMAZ
  • [2] Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device
    Bagryansky, P. A.
    Shalashov, A. G.
    Gospodchikov, E. D.
    Lizunov, A. A.
    Maximov, V. V.
    Prikhodko, V. V.
    Soldatkina, E. I.
    Solomakhin, A. L.
    Yakovlev, D. V.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (20)
  • [3] Birdsall C.K., 2014, Plasma physics via computer simulation
  • [4] Overview of C-2W: high temperature, steady-state beam-driven field-reversed configuration plasmas
    Gota, H.
    Binderbauer, M. W.
    Tajima, T.
    Smirnov, A.
    Putvinski, S.
    Tuszewski, M.
    Dettrick, S. A.
    Gupta, D. K.
    Korepanov, S.
    Magee, R. M.
    Park, J.
    Roche, T.
    Romero, J. A.
    Trask, E.
    Yang, X.
    Yushmanov, P.
    Zhai, K.
    DeHaas, T.
    Griswold, M. E.
    Gupta, S.
    Abramov, S.
    Alexander, A.
    Allfrey, I
    Andow, R.
    Barnett, B.
    Beall, M.
    Bolte, N. G.
    Bomgardner, E.
    Bondarenko, A.
    Ceccherini, F.
    Chao, L.
    Clary, R.
    Cooper, A.
    Deng, C.
    Dunaevsky, A.
    Feng, P.
    Finucane, C.
    Fluegge, D.
    Galeotti, L.
    Galkin, S.
    Galvin, K.
    Granstedt, E. M.
    Hubbard, K.
    Isakov, I.
    Kaur, M.
    Kinley, J. S.
    Korepanov, A.
    Krause, S.
    Lau, C. K.
    Lednev, A.
    [J]. NUCLEAR FUSION, 2021, 61 (10)
  • [5] Transport studies in high-performance field reversed configuration plasmas
    Gupta, S.
    Barnes, D. C.
    Dettrick, S. A.
    Trask, E.
    Tuszewski, M.
    Deng, B. H.
    Gota, H.
    Gupta, D.
    Hubbard, K.
    Korepanov, S.
    Thompson, M. C.
    Zhai, K.
    Tajima, T.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [6] ELECTRON DYNAMICS AND ENHANCEMENT OF Q IN MIRROR-MAGNETIC WELLS
    HALL, LS
    [J]. NUCLEAR FUSION, 1977, 17 (04) : 681 - 695
  • [7] RECENT PROGRESS IN STUDIES OF PLASMA HEATING AND STABILIZATION IN AXISYMMETRIC MAGNETIC MIRRORS IN NOVOSIBIRSK
    Ivanov, A. A.
    Burdakov, A. V.
    Bagryansky, P. A.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (01) : 56 - 62
  • [8] Konkashbaev I. K., 1978, Sov. Phys.JETP, V47, P501
  • [9] Kulsrud R. M., 1985, HDB PLASMA PHYS BASI, V1, P1
  • [10] A theory for formation of a low pressure, current-free double layer
    Lieberman, M. A.
    Charles, C.
    Boswell, R. W.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (15) : 3294 - 3304