Shear transfer strength of alkali-activated slag-based concrete

被引:6
|
作者
Liu, Yuzhong [1 ]
Zhou, Fen [1 ]
Shen, Yin [1 ]
Hwang, Hyeon-Jong [2 ]
Du, Yunxing [1 ]
Mao, Yuguang [1 ]
Shi, Caijun [1 ,3 ]
机构
[1] Hunan Univ, Coll Civil Engn, Int Innovat Ctr Green & Adv Civil Engn Mat Hunan P, Key Lab Green & Adv Civil Engn Mat & Applicat Tech, Changsha 410082, Peoples R China
[2] Konkuk Univ, Sch Architecture, 120 Neungdong Ro, Seoul 05029, South Korea
[3] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
来源
基金
中国国家自然科学基金;
关键词
Alkali-activated slag-based concrete; Concrete strength; Push-off test; Prediction model; Shear transfer strength; REINFORCED-CONCRETE; FRICTION;
D O I
10.1016/j.jobe.2023.106304
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As a part of ongoing research to apply alkali-activated slag-based concrete in building structures, the shear transfer behavior of alkali-activated slag-based concrete was experimentally examined through the push-off tests of 32 initially uncracked reinforced planes. The test parameters were concrete type, concrete strength, shear reinforcement ratio, and shear plane size. The test results and comparative analysis showed that the shear strength of reinforced alkali-activated slag-based concrete (AAC) was comparable to Portland cement concrete (PCC) counterparts. However, AAC planes cracked earlier and displayed larger crack separation at the peak load, which is attributed to higher cracking prevalence and brittleness of AAC. Both the increase of concrete strength and lateral constraint stress promotes the development of shear strength in reinforced planes, and their effect is interactional. The shear strength decreased as the shear plane width and depth increased. The existing strength models from design codes and literatures for the shear transfer strength of PCC are still applicable to reinforced AAC planes. Among them, AASHTO LRFD Bridge Design Specifications and the nonlinear model proposed by Mau and Hsu gave better predictions of the measured shear strengths of AAC.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Developing a comprehensive prediction model for the compressive strength of slag-based alkali-activated concrete
    Jafari, Alireza
    Toufigh, Vahab
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (02) : 256 - 273
  • [2] Flexural behavior of alkali-activated slag-based concrete beams
    Du, Yunxing
    Wang, Jia
    Shi, Caijun
    Hwang, Hyeon-Jong
    Li, Ning
    ENGINEERING STRUCTURES, 2021, 229 (229)
  • [3] Effects of rice husk ash on strength and durability performance of slag-based alkali-activated concrete
    Pradhan, Shashwati Soumya
    Mishra, Umesh
    Biswal, Sushant Kumar
    Pramanik, Subhadip
    Jangra, Parveen
    Aslani, Farhad
    STRUCTURAL CONCRETE, 2024, 25 (04) : 2839 - 2854
  • [4] Fracture properties of slag-based alkali-activated seawater coral aggregate concrete
    Zhang, Bai
    Zhu, Hong
    Lu, Fei
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 115
  • [5] Effect of binder and activator composition on the characteristics of alkali-activated slag-based concrete
    Heshmat, Mohamed
    Amer, Ismail
    Elgabbas, Fareed
    Khalaf, Mohamed A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Synthesis and Morphology of Slag-based Alkali-Activated Materials
    Komnitsas, Konstantinos
    Peys, Arne
    Tampouris, Stylianos
    Karmali, Vasiliki
    Bartzas, Georgios
    Vathi, Dimitra
    Kritikaki, Anna
    MINING METALLURGY & EXPLORATION, 2025, 42 (01) : 1 - 13
  • [7] Fire-induced damage assessment of cementless alkali-activated slag-based concrete
    Palizi, Soheil
    Toufigh, Vahab
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 393
  • [8] Optimized Alkali-Activated Slag-Based Concrete Reinforced with Recycled Tire Steel Fiber
    Eskandarinia, Milad
    Esmailzade, Mina
    Hojatkashani, Ata
    Rahmani, Aida
    Jahandari, Soheil
    MATERIALS, 2022, 15 (19)
  • [9] A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete
    Li, Ning
    Shi, Caijun
    Zhang, Zuhua
    Zhu, Deju
    Hwang, Hyeon-Jong
    Zhu, Yuhan
    Sun, Tengjiao
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 163 - 174
  • [10] Alternative concrete based on alkali-activated slag
    Rodriguez, E.
    Bernal, S.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2008, 58 (291) : 53 - 67