Effect of Different Confinements on High-Strength Steel Fiber-Reinforced Concrete (SFRC) Beams

被引:1
|
作者
Hafeez, Hammad [1 ]
Ahmad, Waqas [1 ]
Usman, Muhammad [1 ]
Hanif, Asad [2 ,3 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Civil & Environm Engn SCEE, Sect H-12, Islamabad, Pakistan
[2] King Fahd Univ Petr & Minerals KFUPM, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Steel fibers; Fiber-reinforced concrete; High-strength concrete; Properties degradation; Mechanical performance; RC BEAMS; FLEXURAL BEHAVIOR; MECHANICAL-PROPERTIES; SHEAR BEHAVIOR; ASPECT RATIO; PERFORMANCE;
D O I
10.1007/s13369-023-08171-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-strength concrete is extensively used in the construction industry due to its higher stiffness and modulus, but it is inherently brittle. In order to reduce its brittle behavior, steel fibers are being used to increase their application in the construction industry. In this experimental study, a fixed volume fraction (V-f = 1.5%) of steel fiber was used in the concrete, whereas the type of confinement (steel tube and carbon fiber-reinforced polymer CFRP strip) was varied. Five high-strength concrete beams with and without steel fibers strengthened with different confinements (steel sheet and CFRP) were cast and evaluated for flexural performance. (Four-point loading tests were done here.) Conventional steel was used for reinforcing concrete as it has the same lateral and longitudinal strengths. The high initial cost of steel tubes is compensated by eliminating the cost of formwork required for casting regular concrete members. For conventional reinforcement, a balanced steel ratio was used. All specimens were tested under monotonic loading. The tested structural elements showed good plasticity and increased flexural capacity. The improved ductility and energy absorption capacity of the members indicate their promising use in building structures.
引用
收藏
页码:4567 / 4580
页数:14
相关论文
共 50 条
  • [21] Effect of Types of Concrete on Flexural Behavior of Beams Reinforced with High-Strength Steel Bars
    Aldabagh, Saif
    Abed, Farid
    Yehia, Sherif
    ACI STRUCTURAL JOURNAL, 2018, 115 (02) : 351 - 364
  • [22] Mechanical Properties and Microstructure of Cellulose Fiber- and Synthetic Fiber-Reinforced High-Strength Concrete
    Sangkeaw, Panisa
    Thongchom, Chanachai
    Keawsawasvong, Suraparb
    Prasittisopin, Lapyote
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (03) : 2149 - 2168
  • [23] Evaluation of Size-Effect Models for High-Strength Steel Fiber-Reinforced Concrete
    Khalilpour, S.
    Dehestani, M.
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2020, 9 (01): : 444 - 462
  • [24] Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear
    Padmarajaiah, SK
    Ramaswamy, A
    ACI STRUCTURAL JOURNAL, 2001, 98 (05) : 752 - 761
  • [25] Torsional Behavior of Reinforced Concrete Beams with High-Strength Steel Bars
    Kim, C.
    Kim, S.
    Kim, K-H
    Shin, D.
    Haroon, M.
    Lee, J-Y
    ACI STRUCTURAL JOURNAL, 2019, 116 (06) : 251 - 263
  • [26] Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete
    Song, PS
    Wu, JC
    Hwang, S
    Sheu, BC
    CEMENT AND CONCRETE RESEARCH, 2005, 35 (02) : 393 - 399
  • [27] Flexural Behavior of High-Strength Steel and Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams
    Xia, Jun
    BUILDINGS, 2024, 14 (01)
  • [28] Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag
    Yang, Jun-Mo
    Yoo, Doo-Yeol
    Kim, You-Chan
    Yoon, Young-Soo
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2017, 11 (02) : 391 - 401
  • [29] Sustainable design framework for enhancing shear capacity in beams using recycled steel fiber-reinforced high-strength concrete
    Qin, Xia
    Huang, Xu
    Li, Yang
    Kaewunruen, Sakdirat
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [30] Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams
    El-Mandouh, Mahmoud A.
    Kaloop, Mosbeh R.
    Hu, Jong-Wan
    Abd El-Maula, Ahmed S.
    MATERIALS, 2022, 15 (11)