Nonlinear Model Predictive Control Schemes for Obstacle Avoidance

被引:7
作者
Santos, Marcelo A. [1 ,3 ]
Ferramosca, Antonio [2 ]
Raffo, Guilherme V. [1 ,3 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, Belo Horizonte, MG, Brazil
[2] Univ Bergamo, Dept Management Informat & Prod Engn, Bergamo, Italy
[3] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Obstacle avoidance; Nonlinear MPC; Set-point tracking; Motion systems; COMMAND GOVERNORS; MOBILE ROBOTS; OPTIMIZATION; STABILITY; MPC; CONSTRAINTS; NAVIGATION; TRACKING; SYSTEMS;
D O I
10.1007/s40313-023-01024-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes single-layer nonlinear model predictive control schemes to solve the autonomous navigation problem while providing obstacle avoidance feature in cluttered environments with previously unknown obstacles. Considering model predictive control frameworks for set-point stabilization and set-point tracking, the penalty method of nonlinear programming is taken into account to enforce avoidance constraints without losing stability and feasibility guarantees. The set-point tracking schemes are shown to be more suitable for motion systems due to their enlarged domain of attraction with respect to the regulation formulations, making it feasible for any changing targets. Further, for the set-point tracking problem, the proposed schemes avoid the use of terminal regions, which, for nonlinear systems, might be cumbersome to compute. Thus, simple design schemes based on a relaxed terminal equality constraint and on a weighted terminal cost are considered. Finally, two case studies considering a differential mobile robot and a quadrotor unmanned aerial vehicle are provided to evaluate the set-point tracking formulations.
引用
收藏
页码:891 / 906
页数:16
相关论文
共 42 条
[1]   An Input-to-State-Stability Approach to Economic Optimization in Model Predictive Control [J].
Alessandretti, Andrea ;
Aguiar, A. Pedro ;
Jones, Colin N. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) :6081-6093
[2]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[3]   Command governors for constrained nonlinear systems [J].
Angeli, D ;
Mosca, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :816-820
[4]  
[Anonymous], 1984, Proceedings of the 9th IFAC World Congress, (Budapest), DOI [10.1016/S1474-6670(17)61205-9, DOI 10.1016/S1474-6670(17)61205-9, 10.1016/S1474-6670]
[5]   Reference governor for constrained nonlinear systems [J].
Bemporad, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :415-419
[6]  
Bonab SA, 2019, IEEE IND ELEC, P3823, DOI 10.1109/IECON.2019.8926856
[7]   Autonomous Drone Cinematographer: Using Artistic Principles to Create Smooth, Safe, Occlusion-Free Trajectories for Aerial Filming [J].
Bonatti, Rogerio ;
Zhang, Yanfu ;
Choudhury, Sanjiban ;
Wang, Wenshan ;
Scherer, Sebastian .
PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 :119-129
[8]  
Dixon W.E., 2001, Nonlinear control of wheeled mobile robots
[9]   Optimal MPC for tracking of constrained linear systems [J].
Ferramosca, A. ;
Limon, D. ;
Alvarado, I. ;
Alamo, T. ;
Castano, F. ;
Camacho, E. F. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (08) :1265-1276
[10]   MPC for tracking with optimal closed-loop performance [J].
Ferramosca, A. ;
Limon, D. ;
Alvarado, I. ;
Alamo, T. ;
Camacho, E. F. .
AUTOMATICA, 2009, 45 (08) :1975-1978