CRISPR single base-editing: in silico predictions to variant clonal cell lines

被引:1
作者
Dickson, Kristie-Ann [1 ]
Field, Natisha [1 ]
Blackman, Tiane [1 ]
Ma, Yue [1 ]
Xie, Tao [1 ]
Kurangil, Ecem [1 ]
Idrees, Sobia [2 ,3 ]
Rathnayake, Senani N. H. [4 ]
Mahbub, Rashad M. [4 ]
Faiz, Alen [4 ]
Marsh, Deborah J. [1 ,5 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Life Sci, Translat Oncol Grp, Ultimo, NSW 2007, Australia
[2] Centenary Inst, Fac Sci, Ctr Inflammat, Sch Life Sci, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Sydney, NSW 2007, Australia
[4] Univ Technol Sydney, Fac Sci, Sch Life Sci, Resp Bioinformat & Mol Biol RBMB, Ultimo, NSW 2007, Australia
[5] Univ Technol Sydney, Fac Sci, Sch Life Sci, Ultimo, NSW 2007, Australia
基金
英国医学研究理事会;
关键词
GENOMIC DNA; MUTANTS; CANCER; GAIN;
D O I
10.1093/hmg/ddad105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Engineering single base edits using CRISPR technology including specific deaminases and single-guide RNA (sgRNA) is a rapidly evolving field. Different types of base edits can be constructed, with cytidine base editors (CBEs) facilitating transition of C-to-T variants, adenine base editors (ABEs) enabling transition of A-to-G variants, C-to-G transversion base editors (CGBEs) and recently adenine transversion editors (AYBE) that create A-to-C and A-to-T variants. The base-editing machine learning algorithm BE-Hive predicts which sgRNA and base editor combinations have the strongest likelihood of achieving desired base edits. We have used BE-Hive and TP53 mutation data from The Cancer Genome Atlas (TCGA) ovarian cancer cohort to predict which mutations can be engineered, or reverted to wild-type (WT) sequence, using CBEs, ABEs or CGBEs. We have developed and automated a ranking system to assist in selecting optimally designed sgRNA that considers the presence of a suitable protospacer adjacent motif (PAM), the frequency of predicted bystander edits, editing efficiency and target base change. We have generated single constructs containing ABE or CBE editing machinery, an sgRNA cloning backbone and an enhanced green fluorescent protein tag (EGFP), removing the need for co-transfection of multiple plasmids. We have tested our ranking system and new plasmid constructs to engineer the p53 mutants Y220C, R282W and R248Q into WT p53 cells and shown that these mutants cannot activate four p53 target genes, mimicking the behaviour of endogenous p53 mutations. This field will continue to rapidly progress, requiring new strategies such as we propose to ensure desired base-editing outcomes.
引用
收藏
页码:2704 / 2716
页数:13
相关论文
共 46 条
  • [1] NmeCas9 is an intrinsically high-fidelity genome-editing platform
    Amrani, Nadia
    Gao, Xin D.
    Liu, Pengpeng
    Edraki, Alireza
    Mir, Aamir
    Ibraheim, Raed
    Gupta, Ankit
    Sasaki, Kanae E.
    Wu, Tong
    Donohoue, Paul D.
    Settle, Alexander H.
    Lied, Alexandra M.
    McGovern, Kyle
    Fuller, Chris K.
    Cameron, Peter
    Fazzio, Thomas G.
    Zhu, Lihua Julie
    Wolfe, Scot A.
    Sontheimer, Erik J.
    [J]. GENOME BIOLOGY, 2018, 19
  • [2] Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning
    Arbab, Mandana
    Shen, Max W.
    Mok, Beverly
    Wilson, Christopher
    Matuszek, Zaneta
    Cassa, Christopher A.
    Liu, David R.
    [J]. CELL, 2020, 182 (02) : 463 - +
  • [3] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [4] Unravelling mechanisms of p53-mediated tumour suppression
    Bieging, Kathryn T.
    Mello, Stephano Spano
    Attardi, Laura D.
    [J]. NATURE REVIEWS CANCER, 2014, 14 (05) : 359 - 370
  • [5] When mutants gain new powers: news from the mutant p53 field
    Brosh, Ran
    Rotter, Varda
    [J]. NATURE REVIEWS CANCER, 2009, 9 (10) : 701 - 713
  • [6] Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing
    Cole, Alexander J.
    Dwight, Trisha
    Gill, Anthony J.
    Dickson, Kristie-Ann
    Zhu, Ying
    Clarkson, Adele
    Gard, Gregory B.
    Maidens, Jayne
    Valmadre, Susan
    Clifton-Bligh, Roderick
    Marsh, Deborah J.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] Cook A.L., 2022, ISCIENCE, V25
  • [8] beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing
    Dandage, Rohan
    Despres, Philippe C.
    Yachie, Nozomu
    Landry, Christian R.
    [J]. GENETICS, 2019, 212 (02) : 377 - 385
  • [9] CRISPR based therapeutics: a new paradigm in cancer precision medicine
    Das, Sumit
    Bano, Shehnaz
    Kapse, Prachi
    Kundu, Gopal C.
    [J]. MOLECULAR CANCER, 2022, 21 (01)
  • [10] A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation
    Di Blasi, Roberto
    Marbiah, Masue M.
    Siciliano, Velia
    Polizzi, Karen
    Ceroni, Francesca
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)