Protein-based Nanoparticle Vaccine Approaches Against Infectious Diseases

被引:11
作者
Tapia, Daniel [1 ,2 ]
Reyes-Sandoval, Arturo [3 ]
Sanchez-Villamil, Javier I. [4 ,5 ]
机构
[1] MIT, Massachusetts Gen Hosp, Ragon Inst, Cambridge, MA USA
[2] Harvard Univ, Cambridge, MA USA
[3] Inst Politecn Nacl, Escuela Nacl Ciencias Biol, Lab Nacl Vacunol & Virus Trop, Ciudad De Mexico, Mexico
[4] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Morelos, Atlacholoaya, Morelos, Mexico
[5] Inst Politecn Nacl, Unidad Morelos, CICATA, Blvd Tecnol 1036 Z-1, P 2-2, Atlacholoaya 62790, Morelos, Mexico
关键词
Vaccines; Nanoparticles; Infectious diseases; Ferritin; Lumazine synthase; Serum al-bumin; SHIGA TOXIN TYPE-2; LUMAZINE SYNTHASE; ANTIBODY-RESPONSES; IRON STORAGE; N-TERMINUS; IMMUNIZATION; FERRITIN; PROTECTION; IDENTIFICATION; INSERTION;
D O I
10.1016/j.arcmed.2023.02.003
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The field of vaccine development has seen an increase in the number of rationally de-signed technologies that increase effectiveness against vaccine-resistant pathogens, while not compromising safety. Yet, there is still an urgent need to expand and further under-stand these platforms against complex pathogens that often evade protective responses. Nanoscale platforms have been at the center of new studies, especially in the wake of the coronavirus disease 2019 (COVID-19), with the aim of deploying safe and effective vaccines in a short time period. The intrinsic properties of protein-based nanoparti-cles, such as biocompatibility, flexible physicochemical characteristics, and variety have made them an attractive platform against different infectious disease agents. In the past decade, several studies have tested both lumazine synthase-, ferritin-, and albumin-based nanoplatforms against a wide range of complex pathogens in pre-clinical studies. Owed to their success in pre-clinical studies, several studies are undergoing human clinical trials or are near an initial phase. In this review we highlight the different protein-based platforms, mechanisms of synthesis, and effectiveness of these over the past decade. In addition, some challenges, and future directions to increase their effectiveness are also highlighted. Taken together, protein-based nanoscaffolds have proven to be an effective means to design rationally designed vaccines, especially against complex pathogens and emerging infectious diseases.(c) 2023 Instituto Mexicano del Seguro Social (IMSS). Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 98 条
[31]  
Joyce MG., 2021, bioRxiv, DOI [10.1101/2021.03.24.436523, DOI 10.1101/2021.03.24.436523]
[32]   Design of a broadly reactive Lyme disease vaccine [J].
Kamp, Heather D. ;
Swanson, Kurt A. ;
Wei, Ronnie R. ;
Dhal, Pradeep K. ;
Dharanipragada, Ram ;
Kern, Aurelie ;
Sharma, Bijaya ;
Sima, Radek ;
Hajdusek, Ondrej ;
Hu, Linden T. ;
Wei, Chih-Jen ;
Nabel, Gary J. .
NPJ VACCINES, 2020, 5 (01)
[33]   Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies [J].
Kanekiyo, Masaru ;
Wei, Chih-Jen ;
Yassine, Hadi M. ;
McTamney, Patrick M. ;
Boyington, Jeffrey C. ;
Whittle, James R. R. ;
Rao, Srinivas S. ;
Kong, Wing-Pui ;
Wang, Lingshu ;
Nabel, Gary J. .
NATURE, 2013, 499 (7456) :102-+
[34]   Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates [J].
Kang, Yin-Feng ;
Sun, Cong ;
Zhuang, Zhen ;
Yuan, Run-Yu ;
Zheng, Qingbing ;
Li, Jiang-Ping ;
Zhou, Ping-Ping ;
Chen, Xin-Chun ;
Liu, Zhe ;
Zhang, Xiao ;
Yu, Xiao-Hui ;
Kong, Xiang-Wei ;
Zhu, Qian-Ying ;
Zhong, Qian ;
Xu, Miao ;
Zhong, Nan-Shan ;
Zeng, Yi-Xin ;
Feng, Guo-Kai ;
Ke, Changwen ;
Zhao, Jin-Cun ;
Zeng, Mu-Sheng .
ACS NANO, 2021, 15 (02) :2738-2752
[35]  
Kheirollahpour Mehdi, 2020, Pharmaceutical Nanotechnology, V8, P6, DOI 10.2174/2211738507666191024162042
[36]   Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets [J].
Kim, Young-Il ;
Kim, Dokyun ;
Yu, Kwang-Min ;
Seo, Hogyu David ;
Lee, Shin-Ae ;
Casel, Mark Anthony B. ;
Jang, Seung-Gyu ;
Kim, Stephanie ;
Jung, WooRam ;
Lai, Chih-Jen ;
Choi, Young Ki ;
Jung, Jae U. .
MBIO, 2021, 12 (02) :1-13
[37]   Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles [J].
Kim, Young-Seok ;
Son, Ahyun ;
Kim, Jihoon ;
Bin Kwon, Soon ;
Kim, Myung Hee ;
Kim, Paul ;
Kim, Jieun ;
Byun, Young Ho ;
Sung, Jemin ;
Lee, Jinhee ;
Yu, Ji Eun ;
Park, Chan ;
Kim, Yeon-Sook ;
Cho, Nam-Hyuk ;
Chang, Jun ;
Seong, Baik L. .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[38]  
King HAD., 2021, BIORXIV, DOI [10.1101/2021.04.09.439166, DOI 10.1101/2021.04.09.439166]
[39]   Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles [J].
Kumar, Sonu ;
Lin, Xiaohe ;
Ngo, Timothy ;
Shapero, Benjamin ;
Sou, Cindy ;
Allen, Joel D. ;
Copps, Jeffrey ;
Zhang, Lei ;
Ozorowski, Gabriel ;
He, Linling ;
Crispin, Max ;
Ward, Andrew B. ;
Wilson, Ian A. ;
Zhu, Jiang .
MBIO, 2021, 12 (03)
[40]   Targeted delivery of albumin nanoparticles for breast cancer: A review [J].
Kunde, Shalvi Sinai ;
Wairkar, Sarika .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 213