Proximal causal inference without uniqueness assumptions

被引:1
|
作者
Zhang, Jeffrey [1 ]
Li, Wei [2 ,3 ]
Miao, Wang [4 ]
Tchetgen, Eric Tchetgen [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[2] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
[3] Renmin Univ China, Sch Stat, Beijing, Peoples R China
[4] Peking Univ, Dept Probabil & Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal causal inference; root n-estimability; MODELS;
D O I
10.1016/j.spl.2023.109836
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider identification and inference about a counterfactual outcome mean when there is unmeasured confounding using tools from proximal causal inference (Miao et al., 2018, Tchetgen Tchetgen et al., 2020). Proximal causal inference requires existence of solutions to at least one of two integral equations. We motivate the existence of solutions to the integral equations from proximal causal inference by demonstrating that, assuming the existence of a solution to one of the integral equations, root n-estimability of a linear functional (such as its mean) of that solution requires the existence of a solution to the other integral equation. Solutions to the integral equations may not be unique, which complicates estimation and inference. We construct a consistent estimator for the solution set for one of the integral equations and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator for a uniquely defined solution. A debiased estimator for the counterfactual mean is shown to be root -n consistent, regular, and asymptotically semiparametrically locally efficient under additional regularity conditions. (C) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Semiparametric Proximal Causal Inference
    Cui, Yifan
    Pu, Hongming
    Shi, Xu
    Miao, Wang
    Tchetgen, Eric Tchetgen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1348 - 1359
  • [2] Disentangling causality: assumptions in causal discovery and inference
    Vonk, Maarten C.
    Malekovic, Ninoslav
    Back, Thomas
    Kononova, Anna V.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10613 - 10649
  • [3] Proximal causal inference for complex longitudinal studies
    Ying, Andrew
    Miao, Wang
    Shi, Xu
    Tchetgen, Eric J. Tchetgen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 684 - 704
  • [4] Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions
    Jun, Sung Jae
    Lee, Sokbae
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (03) : 998 - 1009
  • [5] Without Commitment to an Ontology, There Could Be No Causal Inference
    Sarvet, Aaron L.
    Stensrud, Mats J.
    EPIDEMIOLOGY, 2022, 33 (03) : 372 - 378
  • [6] Ancestral Instrument Method for Causal Inference without Complete Knowledge
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Zhang, Jiji
    Le, Thuc duy
    Liu, Jixue
    PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, 2022, : 4843 - 4849
  • [7] Regression Discontinuity Designs in Epidemiology Causal Inference Without Randomized Trials
    Bor, Jacob
    Moscoe, Ellen
    Mutevedzi, Portia
    Newell, Marie-Louise
    Baernighausen, Till
    EPIDEMIOLOGY, 2014, 25 (05) : 729 - 737
  • [8] Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
    Ghassami, AmirEmad
    Ying, Andrew
    Shpitser, Ilya
    Tchetgen, Eric Tchetgen
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [9] An Introduction to Causal Inference
    Pearl, Judea
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02)
  • [10] THE FOUNDATIONS OF CAUSAL INFERENCE
    Pearl, Judea
    SOCIOLOGICAL METHODOLOGY, VOL 40, 2010, 40 : 75 - 149