Detection of cigarette appearance defects based on improved YOLOv4

被引:7
|
作者
Yuan, Guowu [1 ]
Liu, Jiancheng [1 ]
Liu, Hongyu [1 ]
Ma, Yihai [1 ]
Wu, Hao [1 ]
Zhou, Hao [1 ]
机构
[1] Yunnan Univ, Sch Informat, Kunming 650504, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 03期
关键词
appearance defect; cigarette; object detection; YOLOv4; deep learning;
D O I
10.3934/era.2023069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Appearance defects are visible factors that affect the quality of cigarettes. Most of the consumer complaints received by tobacco companies are caused by appearance defects of cigarettes. Therefore, it is of great significance to reduce cigarettes with appearance defects. At present, tobacco factories mainly detect the appearance quality of cigarettes through manual sampling inspection. The manual method has low detection efficiency, it is difficult to unify the judgment standard, and it is easy to cause secondary pollution to cigarettes. According to the features of cigarette appearance defects, the YOLOv4 (You Only Look Once Version 4) model was improved for cigarette appearance defect detection. We have improved the following: 1) the channel attention mechanism was introduced into YOLOv4 to improve the detection precision; 2) the K-means++ algorithm was used to optimize the selection of clustering centers; 3) the spatial pyramid pooling (SPP) was replaced with atrous spatial pyramid pooling (ASPP) to improve the defect detection ability with different sizes; 4) the alpha-CIoU loss function was used to improve the detection precision. The mAP of our improved method reached 91.77%, the precision reached 93.32%, and the recall reached 88.81%. Compared with other models, our method has better comprehensive performance and better detection ability.
引用
收藏
页码:1344 / 1364
页数:21
相关论文
共 50 条
  • [21] Study on Detection and Recognition of Traffic Lights Based on Improved YOLOv4
    Zhao, Ying
    Feng, Yiyuan
    Wang, Yueqiang
    Zhang, Zhihan
    Zhang, Zhihao
    SENSORS, 2022, 22 (20)
  • [22] Detection Algorithm of Pedestrian Shoe Area Based on Improved YOLOv4
    Yang Zhixiong
    Tang Yunqi
    Zhang Jiajun
    Geng Pengzhi
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [23] An improved personal protective equipment detection method based on YOLOv4
    Qiao, Rengjie
    Cai, Chengtao
    Meng, Haiyang
    Wu, Kejun
    Wang, Feng
    Zhao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82621 - 82639
  • [24] Tunnel Lining Crack Detection Algorithm Based on Improved YOLOv4
    Zhou Z.
    Zhang J.
    Lu S.
    Tiedao Xuebao/Journal of the China Railway Society, 2023, 45 (10): : 162 - 170
  • [25] Potato detection in complex environment based on improved YoloV4 model
    Zhang Z.
    Zhang Z.
    Li J.
    Wang H.
    Li Y.
    Li D.
    1600, Chinese Society of Agricultural Engineering (37): : 170 - 178
  • [26] Improved YOLOv4 based on dilated coordinate attention for object detection
    Yang, Zhenzhen
    Zheng, Yixin
    Shao, Jing
    Yang, Yongpeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 56261 - 56273
  • [27] Real-Time Detection of Mango Based on Improved YOLOv4
    Cao, Zhipeng
    Yuan, Ruibo
    ELECTRONICS, 2022, 11 (23)
  • [28] Road Surface Disease Detection Algorithm Based on Improved YOLOv4
    Hui, Luo
    Chen, Jia
    Jian, Li
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (14)
  • [29] IMPROVED LIGHTWEIGHT YOLOV4 SMOKE DETECTION BASED ON ECA ATTENTION
    Wang, Yuan-Bin
    Duan, Yu
    Wu, Bin-Chao
    Wu, Hua-Ying
    Han, Qian
    Journal of Technology, 2024, 39 (01): : 25 - 34
  • [30] Muti⁃Object dishes detection algorithm based on improved YOLOv4
    Che, Xiang-Jiu
    Chen, He-Yuan
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (11): : 2662 - 2668