Bioceramics in Endodontics: Updates and Future Perspectives

被引:39
作者
Dong, Xu [1 ,2 ]
Xu, Xin [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Dept Cariol & Endodont, Chengdu 610041, Peoples R China
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 03期
关键词
bioceramics; endodontic diseases; vital pulp therapy; root canal therapy; endodontic microsurgery; regenerative endodontic treatment;
D O I
10.3390/bioengineering10030354
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bioceramics, with excellent bioactivity and biocompatibility, have been widely used in dentistry, particularly in endodontics. Mineral trioxide aggregate (MTA) is the most widely used bioceramic in endodontics. Recently, many new bioceramics have been developed, showing good potential for the treatment of endodontic diseases. This paper reviews the characteristics of bioceramics and their applications in various clinical endodontic situations, including root-end filling, root canal therapy, vital pulp therapy, apexification/regenerative endodontic treatment, perforation repair, and root defect repair. Relevant literature published from 1993 to 2023 was searched by keywords in PubMed and Web of Science. Current evidence supports the predictable outcome of MTA in the treatment of endodontic diseases. Although novel bioceramics such as Biodentine, EndoSequence, and calcium-enriched mixtures have shown promising clinical outcomes, more well-controlled clinical trials are still needed to provide high-level evidence for their application in endodontics. In addition, to better tackle the clinical challenges in endodontics, efforts are needed to improve the bioactivity of bioceramics, particularly to enhance their antimicrobial activity and mechanical properties and reduce their setting time and solubility.
引用
收藏
页数:30
相关论文
empty
未找到相关数据