Scaling limit for random walk on the range of random walk in four dimensions

被引:0
|
作者
Croydon, D. A. [1 ]
Shiraishi, D. [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Adv Math Sci, Kyoto 6068501, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
关键词
Random walk; Scaling limit; Range of random walk; Random environment; BROWNIAN-MOTION; HEAT KERNEL; RESISTANCE;
D O I
10.1214/22-AIHP1243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish scaling limits for the random walk whose state space is the range of a simple random walk on the four-dimensional integer lattice. These concern the asymptotic behaviour of the graph distance from the origin and the spatial location of the random walk in question. The limiting processes are the analogues of those for higher-dimensional versions of the model, but additional logarithmic terms in the scaling factors are needed to see these. The proof applies recently developed machinery relating the scaling of resistance metric spaces and stochastic processes, with key inputs being natural scaling statements for the random walk's invariant measure, the associated effective resistance metric, the graph distance, and the cut times for the underlying simple random walk.
引用
收藏
页码:166 / 184
页数:19
相关论文
共 50 条
  • [41] CENTRAL LIMIT THEOREMS FOR THE PRODUCTS OF RANDOM MATRICES SAMPLED BY A RANDOM WALK
    Duheille-Bienvenue, Frederique
    Guillotin-Plantard, Nadine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 43 - 50
  • [42] Random walk in random groups
    M. Gromov
    Geometric and Functional Analysis, 2003, 13 : 73 - 146
  • [43] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [44] On the range of the simple random walk bridge on groups
    Benjamini, Itai
    Izkovsky, Roey
    Kesten, Harry
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 591 - 612
  • [45] REMARKS ON THE RANGE AND MULTIPLE RANGE OF A RANDOM WALK UP TO THE TIME OF EXIT
    Doehrman, Thomas
    Sethuraman, Sunder
    Venkataramani, Shankar C.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1603 - 1614
  • [46] THE RANGE OF TREE-INDEXED RANDOM WALK
    Le Gall, Jean-Francois
    Lin, Shen
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2016, 15 (02) : 271 - 317
  • [47] Mott Law as Lower Bound for a Random Walk in a Random Environment
    A. Faggionato
    H. Schulz-Baldes
    D. Spehner
    Communications in Mathematical Physics, 2006, 263 : 21 - 64
  • [48] THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK
    Aidekon, Elie
    Shi, Zhan
    ANNALS OF PROBABILITY, 2014, 42 (03) : 959 - 993
  • [49] Some limit properties of local time for random walk
    Wen J.
    Yan Y.
    Applied Mathematics-A Journal of Chinese Universities, 2006, 21 (1) : 87 - 95
  • [50] SOME LIMIT PROPERTIES OF LOCAL TIME FOR RANDOM WALK
    Wen Jiwei Yan YunliangDept. of Math.
    Applied Mathematics A Journal of Chinese Universities(Series B), 2006, (01) : 87 - 95