Scaling limit for random walk on the range of random walk in four dimensions

被引:0
|
作者
Croydon, D. A. [1 ]
Shiraishi, D. [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Adv Math Sci, Kyoto 6068501, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
关键词
Random walk; Scaling limit; Range of random walk; Random environment; BROWNIAN-MOTION; HEAT KERNEL; RESISTANCE;
D O I
10.1214/22-AIHP1243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish scaling limits for the random walk whose state space is the range of a simple random walk on the four-dimensional integer lattice. These concern the asymptotic behaviour of the graph distance from the origin and the spatial location of the random walk in question. The limiting processes are the analogues of those for higher-dimensional versions of the model, but additional logarithmic terms in the scaling factors are needed to see these. The proof applies recently developed machinery relating the scaling of resistance metric spaces and stochastic processes, with key inputs being natural scaling statements for the random walk's invariant measure, the associated effective resistance metric, the graph distance, and the cut times for the underlying simple random walk.
引用
收藏
页码:166 / 184
页数:19
相关论文
共 50 条
  • [31] On random random walk
    Roichman, Y
    ANNALS OF PROBABILITY, 1996, 24 (02) : 1001 - 1011
  • [32] Scaling limit of the loop-erased random walk Green’s function
    Christian Beneš
    Gregory F. Lawler
    Fredrik Viklund
    Probability Theory and Related Fields, 2016, 166 : 271 - 319
  • [33] Scaling limit of the loop-erased random walk Green's function
    Benes, Christian
    Lawler, Gregory F.
    Viklund, Fredrik
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 271 - 319
  • [34] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    Probability Theory and Related Fields, 2020, 177 : 1 - 53
  • [35] Scaling of a random walk on a supercritical contact process
    den Hollander, F.
    dos Santos, R. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1276 - 1300
  • [36] Interpolating between random walk and rotor walk
    Huss, Wilfried
    Levine, Lionel
    Sava-Huss, Ecaterina
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (02) : 263 - 282
  • [37] CAPACITY OF THE RANGE OF RANDOM WALK: THE LAW OF THE ITERATED LOGARITHM
    Dembo, Amir
    Okada, Izumi
    ANNALS OF PROBABILITY, 2024, 52 (05) : 1954 - 1991
  • [38] Random walk on a circle
    Xu, XT
    Yang, YL
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1995, 16 (11): : 1798 - 1801
  • [39] SCALING LIMIT OF THE PRUDENT WALK
    Beffara, Vincent
    Friedli, Sacha
    Velenik, Yvan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 44 - 58
  • [40] Almost sure functional central limit theorem for ballistic random walk in random environment
    Rassoul-Agha, Firas
    Seppaelaeinen, Timo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02): : 373 - 420