Scaling limit for random walk on the range of random walk in four dimensions

被引:0
|
作者
Croydon, D. A. [1 ]
Shiraishi, D. [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Adv Math Sci, Kyoto 6068501, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
关键词
Random walk; Scaling limit; Range of random walk; Random environment; BROWNIAN-MOTION; HEAT KERNEL; RESISTANCE;
D O I
10.1214/22-AIHP1243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish scaling limits for the random walk whose state space is the range of a simple random walk on the four-dimensional integer lattice. These concern the asymptotic behaviour of the graph distance from the origin and the spatial location of the random walk in question. The limiting processes are the analogues of those for higher-dimensional versions of the model, but additional logarithmic terms in the scaling factors are needed to see these. The proof applies recently developed machinery relating the scaling of resistance metric spaces and stochastic processes, with key inputs being natural scaling statements for the random walk's invariant measure, the associated effective resistance metric, the graph distance, and the cut times for the underlying simple random walk.
引用
收藏
页码:166 / 184
页数:19
相关论文
共 50 条
  • [21] ON THE RANGE OF A RANDOM WALK IN A TORUS AND RANDOM INTERLACEMENTS
    Procaccia, Eviatar B.
    Shellef, Eric
    ANNALS OF PROBABILITY, 2014, 42 (04) : 1590 - 1634
  • [22] Slow movement of a random walk on the range of a random walk in the presence of an external field
    David A. Croydon
    Probability Theory and Related Fields, 2013, 157 : 515 - 534
  • [23] Entropy of random walk range
    Benjamini, Itai
    Kozma, Gady
    Yadin, Ariel
    Yehudayoff, Amir
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 1080 - 1092
  • [24] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [25] SCALING LIMIT OF THE PATH LEADING TO THE LEFTMOST PARTICLE IN A BRANCHING RANDOM WALK
    Chen, X.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (04) : 567 - 589
  • [26] The upper limit of a normalized random walk
    Zhang, Cun-Hui
    Random Walk, Sequential Analysis and Related Topics: A FESTSCHRIFT IN HONOR OF YUAN-SHIH CHOW, 2006, : 157 - 167
  • [27] Scaling limits for the random walk penalized by its range in dimension one
    Bouchot, Nicolas
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 791 - 813
  • [28] Deviations for the capacity of the range of a random walk
    Asselah, Amine
    Schapira, Bruno
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 28
  • [29] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [30] The range of a simple random walk on Z
    Vallois, P
    ADVANCES IN APPLIED PROBABILITY, 1996, 28 (04) : 1014 - 1033