Scaling limit for random walk on the range of random walk in four dimensions

被引:0
|
作者
Croydon, D. A. [1 ]
Shiraishi, D. [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Adv Math Sci, Kyoto 6068501, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
关键词
Random walk; Scaling limit; Range of random walk; Random environment; BROWNIAN-MOTION; HEAT KERNEL; RESISTANCE;
D O I
10.1214/22-AIHP1243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish scaling limits for the random walk whose state space is the range of a simple random walk on the four-dimensional integer lattice. These concern the asymptotic behaviour of the graph distance from the origin and the spatial location of the random walk in question. The limiting processes are the analogues of those for higher-dimensional versions of the model, but additional logarithmic terms in the scaling factors are needed to see these. The proof applies recently developed machinery relating the scaling of resistance metric spaces and stochastic processes, with key inputs being natural scaling statements for the random walk's invariant measure, the associated effective resistance metric, the graph distance, and the cut times for the underlying simple random walk.
引用
收藏
页码:166 / 184
页数:19
相关论文
共 50 条
  • [11] Slow movement of a random walk on the range of a random walk in the presence of an external field
    Croydon, David A.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 515 - 534
  • [12] Scaling limit of the recurrent biased random walk on a Galton-Watson tree
    Aidekon, Elie
    de Raphelis, Loic
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (3-4) : 643 - 666
  • [13] Scaling limit of the recurrent biased random walk on a Galton–Watson tree
    Elie Aïdékon
    Loïc de Raphélis
    Probability Theory and Related Fields, 2017, 169 : 643 - 666
  • [14] Scaling limit of local time of Sinai’s random walk
    Wenming Hong
    Hui Yang
    Ke Zhou
    Frontiers of Mathematics in China, 2015, 10 : 1313 - 1324
  • [15] Scaling limit and ageing for branching random walk in Pareto environment
    Ortgiese, Marcel
    Roberts, Matthew, I
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1291 - 1313
  • [16] Random walk on random walks: higher dimensions
    Blondel, Oriane
    Hilario, Marcelo R.
    dos Santos, Renato S.
    Sidoravicius, Vladas
    Teixeira, Augusto
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [17] Scaling limit of local time of Sinai's random walk
    Hong, Wenming
    Yang, Hui
    Zhou, Ke
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (06) : 1313 - 1324
  • [18] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [20] Scaling limit of the local time of the reflected (1,2)-random walk
    Yang, Hui
    STATISTICS & PROBABILITY LETTERS, 2019, 155