Intercontinental validation of a clinical prediction model for predicting 90-day and 2-year mortality in an Israeli cohort of 2033 patients with a femoral neck fracture aged 65 or above

被引:2
作者
Oosterhoff, Jacobien H. F. [1 ,2 ,7 ]
Karhade, Aditya V. [2 ]
Groot, Olivier Q. [2 ]
Schwab, Joseph H. [2 ]
Heng, Marilyn [3 ,4 ]
Klang, Eyal [5 ]
Prat, Dan [6 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Amsterdam Movement Sci, Dept Orthopaed Surg, Meibergdreef 9, NL-1105AZ Amsterdam, Netherlands
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Orthopaed Surg, Boston, MA 02115 USA
[3] Univ Miami, Miller Sch Med, Dept Orthopaed Surg, Miami, FL USA
[4] Jackson Mem Ryder Trauma Ctr, Orthopaed Trauma Serv, Miami, FL USA
[5] Sheba Med Ctr, Sami Sagol AI Hub, ARC, Ramat Gan, Israel
[6] Sheba Med Ctr, Dept Orthopaed Surg, Ramat Gan, Israel
[7] Delft Univ Technol, Fac Technol Policy & Management, Dept Engn Syst & Serv, Delft, Netherlands
关键词
Hip fracture; Femoral neck fracture; Geriatric trauma; Prediction model; Mortality; Machine learning; HIP FRACTURE; PERFORMANCE; SURGERY;
D O I
10.1007/s00068-023-02237-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Purpose Mortality prediction in elderly femoral neck fracture patients is valuable in treatment decision-making. A previously developed and internally validated clinical prediction model shows promise in identifying patients at risk of 90-day and 2-year mortality. Validation in an independent cohort is required to assess the generalizability; especially in geographically distinct regions. Therefore we questioned, is the SORG Orthopaedic Research Group (SORG) femoral neck fracture mortality algorithm externally valid in an Israeli cohort to predict 90-day and 2-year mortality?Methods We previously developed a prediction model in 2022 for estimating the risk of mortality in femoral neck fracture patients using a multicenter institutional cohort of 2,478 patients from the USA. The model included the following input variables that are available on clinical admission: age, male gender, creatinine level, absolute neutrophil, hemoglobin level, international normalized ratio (INR), congestive heart failure (CHF), displaced fracture, hemiplegia, chronic obstructive pulmonary disease (COPD), history of cerebrovascular accident (CVA) and beta-blocker use. To assess the generalizability, we used an intercontinental institutional cohort from the Sheba Medical Center in Israel (level I trauma center), queried between June 2008 and February 2022. Generalizability of the model was assessed using discrimination, calibration, Brier score, and decision curve analysis.Results The validation cohort included 2,033 patients, aged 65 years or above, that underwent femoral neck fracture surgery. Most patients were female 64.8% (n = 1317), the median age was 81 years (interquartile range = 75-86), and 80.4% (n = 1635) patients sustained a displaced fracture (Garden III/IV). The 90-day mortality was 9.4% (n = 190) and 2-year mortality was 30.0% (n = 610). Despite numerous baseline differences, the model performed acceptably to the validation cohort on discrimination (c-statistic 0.67 for 90-day, 0.67 for 2-year), calibration, Brier score, and decision curve analysis.Conclusions The previously developed SORG femoral neck fracture mortality algorithm demonstrated good performance in an independent intercontinental population. Current iteration should not be relied on for patient care, though suggesting potential utility in assessing patients at low risk for 90-day or 2-year mortality.
引用
收藏
页码:1545 / 1553
页数:9
相关论文
共 41 条
  • [11] Hagiwara Y, 2022, J PAIN SYMPTOM MANAG, V64, P82
  • [12] Preoperative predictors for mortality following hip fracture surgery: A systematic review and meta-analysis
    Hu, Fangke
    Jiang, Chengying
    Shen, Jing
    Tang, Peifu
    Wang, Yan
    [J]. INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2012, 43 (06): : 676 - 685
  • [13] The value of nonoperative versus operative treatment of frail institutionalized elderly patients with a proximal femoral fracture in the shade of life (FRAIL-HIP); protocol for a multicenter observational cohort study
    Joosse, Pieter
    Loggers, Sverre A. I.
    Van de Ree, C. L. P.
    Van Balen, Romke
    Steens, Jeroen
    Zuurmond, Rutger G.
    Gosens, Taco
    Van Helden, Sven H.
    Polinder, Suzanne
    Willems, Hanna C.
    Van Lieshout, Esther M. M.
    Balemans, Lisanne
    Bloemers, Frank W.
    Bos, Janneke
    Brouwer, Jantien
    Burger, Bart J.
    Daal, Judella O.
    De Jonghe, Annemarieke
    Dijkshoorn, Matthea
    Edwards, Michael J. R.
    Elbrecht, Ellen A.
    Faes, Miriam C.
    Flikweert, Elvira R.
    Gaasbeek, Robert D. A.
    Geraghty, Olivia C.
    Goslings, J. Carel
    Hegeman, J. Han
    Hindriks, Mischa M.
    Holla, Michel
    Janse, Andre
    Jansen, Joris A.
    Jong, Simone J. M.
    Kapitein, Paul J. C.
    Kleinlugtenbelt, Y. V.
    Kreis, Barbara E.
    Krips, Rover
    Lansink, Koen W. W.
    Leijnen, Michiel
    Lubbert, Pieter H. W.
    Luyten, M. Cor
    Raso, Franceso U. S. Mattace
    Meinardi, Marieke C.
    Mellema, Joris
    Mollen, Roland M. H. G.
    Muller, Majon
    Peerbooms, Joost C.
    Ponsen, Kees-Jan
    Poolman, Rudolf W.
    Popescu, Miruna
    ter Gunne, Albert F. Pull
    [J]. BMC GERIATRICS, 2019, 19 (01)
  • [14] Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation
    Karhade, Aditya, V
    Ogink, Paul T.
    Thio, Quirina C. B. S.
    Cha, Thomas D.
    Gormley, William B.
    Hershman, Stuart H.
    Smith, Timothy R.
    Mao, Jianren
    Schoenfeld, Andrew J.
    Bono, Christopher M.
    Schwab, Joseph H.
    [J]. SPINE JOURNAL, 2019, 19 (11) : 1764 - 1771
  • [15] Predicting 90-Day and 1-Year Mortality in Spinal Metastatic Disease: Development and Internal Validation
    Karhade, Aditya V.
    Thio, Quirina C. B. S.
    Ogink, Paul T.
    Bono, Christopher M.
    Ferrone, Marco L.
    Oh, Kevin S.
    Saylor, Philip J.
    Schoenfeld, Andrew J.
    Shin, John H.
    Harris, Mitchel B.
    Schwab, Joseph H.
    [J]. NEUROSURGERY, 2019, 85 (04) : E671 - E681
  • [16] Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis
    Karhade, Aditya, V
    Thio, Quirina C. B. S.
    Ogink, Paul T.
    Shah, Akash A.
    Bono, Christopher M.
    Oh, Kevin S.
    Saylor, Phil J.
    Schoenfeld, Andrew J.
    Shin, John H.
    Harris, Mitchel B.
    Schwab, Joseph H.
    [J]. NEUROSURGERY, 2019, 85 (01) : E83 - E91
  • [17] Karhade AV., 2022, CLIN ORTHOP RELAT R, V2, P2
  • [18] High Mortality in Surgical Patients With Do-Not-Resuscitate Orders Analysis of 8256 Patients
    Kazaure, Hadiza
    Roman, Sanziana
    Sosa, Julie A.
    [J]. ARCHIVES OF SURGERY, 2011, 146 (08) : 922 - 928
  • [19] Kellam JF, 2018, J ORTHOP TRAUMA, V32, pS1, DOI [10.1097/BOT.0000000000001063, 10.1097/BOT.0000000000001062]
  • [20] Mortality prediction models in the adult critically ill: A scoping review
    Keuning, Britt E.
    Kaufmann, Thomas
    Wiersema, Renske
    Granholm, Anders
    Pettila, Ville
    Moller, Morten Hylander
    Christiansen, Christian Fynbo
    Forte, Jose Castela
    Snieder, Harold
    Keus, Frederik
    Pleijhuis, Rick G.
    van der Horst, Iwan C. C.
    [J]. ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2020, 64 (04) : 424 - 442