Preparation, phase analysis and electrochemistry of magnetite (Fe3O4) and maghemite (γ-Fe2O3) nanoparticles

被引:4
作者
Nnadozie, Ebenezer C. [1 ]
Ajibade, Peter A. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Private Bag X01,Scottsville, ZA-3209 Pietermaritzburg, South Africa
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2022年 / 17卷 / 12期
关键词
Magnetite; maghemite; phase analysis; cyclic voltammetry; square wave voltammetry; IRON-OXIDE NANOPARTICLES; SIZE-CONTROLLED SYNTHESIS; LEAD PB2+; OPTIMIZATION; ADSORPTION; OXIDATION; GROWTH; WATER;
D O I
10.20964/2022.12.05
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Magnetite and maghemite superparamagnetic nanoparticles were prepared via co-precipitation synthetic route. The phases of the iron nanoparticles were quantitatively confirmed from their powder X-ray Energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM) were used to differentiate both types of iron nanoparticles. Cyclic voltammetry showed that magnetite nanoparticles exhibited one redox couple while maghemite had both a redox couple and an irreversible anodic peak. The results shows that aqueous ammonia was more desirable for the synthesis of narrow sized and mono-phased magnetite nanoparticles. The iron oxides prepared from sodium nanoparticles confirmed the nanoparticles were crystalline. Superparamagnetism of magnetite respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Precipitation synthesis of magnetite Fe3O4 nanoflakes
    Sutka, Andris
    Lagzdina, Santa
    Juhnevica, Irma
    Jakovlevs, Dmitrijs
    Maiorov, Mikhail
    CERAMICS INTERNATIONAL, 2014, 40 (07) : 11437 - 11440
  • [32] In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Schimanke, G
    Martin, M
    SOLID STATE IONICS, 2000, 136 : 1235 - 1240
  • [33] Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-Based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles
    Tokubuchi, Tsuyoshi
    Arbi, Ramis Imran
    Pan Zhenhua
    Katayama, Kenji
    Turak, Ayse
    Sohn, Woon Yong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2021, 410
  • [34] A survey of approaches for morphological, optical, and transport characterization of Fe3O4 and γ-Fe2O3 nanoparticles
    Tartalja, Danica Mamula
    Sreckovic, Milesa
    PHYSICA SCRIPTA, 2014, T162
  • [35] Magnetic recoverable Ag3PO4/Fe3O4/γ-Fe2O3 nanocomposite☆
    Reboso, Jenifer Vaswani
    Alonso, Jaime Sadhwani
    Santiago, Dunia E.
    DESALINATION AND WATER TREATMENT, 2024, 317
  • [36] The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants
    Wang, Yunqiang
    Wang, Shouxia
    Xu, Mengxuan
    Xiao, Lian
    Dai, Zhaoyi
    Li, Junli
    ENVIRONMENTAL POLLUTION, 2019, 249 : 1011 - 1018
  • [37] The Fe3O4 origin of the "Biphase" reconstruction on α-Fe2O3(0001)
    Lanier, Courtney H.
    Chiaramonti, Ann N.
    Marks, Laurence D.
    Poeppelmeier, Kenneth R.
    SURFACE SCIENCE, 2009, 603 (16) : 2574 - 2579
  • [38] Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals
    Recnik, Aleksander
    Nyiro-Kosa, Ilona
    Dodony, Istvan
    Posfai, Mihaly
    CRYSTENGCOMM, 2013, 15 (37): : 7539 - 7547
  • [39] High Yield Synthesis and Application of Magnetite Nanoparticles (Fe3O4)
    Wroblewski, Charles
    Volford, Tunde
    Martos, Blake
    Samoluk, Jurek
    Martos, Perry
    MAGNETOCHEMISTRY, 2020, 6 (02) : 1 - 14
  • [40] Selenium(IV) Uptake by Maghemite (γ-Fe2O3)
    Jordan, Norbert
    Ritter, Aline
    Scheinost, Andreas C.
    Weiss, Stephan
    Schild, Dieter
    Huebner, Ren
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (03) : 1665 - 1674