Simultaneous variable selection and parameters estimation for longitudinal data subject to missingness and covariates measurement error

被引:0
作者
Basha, Heba A. [1 ]
Abdrabou, Abdelnaser S. [1 ]
Gad, Ahmed M. [2 ]
Ibrahim, Wafaa I. M. [1 ]
机构
[1] Cairo Univ, Fac Econ & Polit Sci, Dept Stat, Giza, Egypt
[2] British Univ Egypt BUE, Fac Business Adm Econ & Polit Sci, Business Adm Dept, El Shorouk, Egypt
关键词
LASSO; Measurement error; Missing longitudinal data; SIMSELEX; Variable selection; MODELS;
D O I
10.1080/03610918.2024.2333355
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal studies are indispensable to study the change over time in a response variable. The main challenge of such studies is the presence of missing values. Another challenge in these studies is that covariates may be subject to measurement error. In such studies, variable selection, especially if the data are subject to measurement error and missingness, is crucial. Variable selection may lead to biased results in case of ignoring the missing values. Also, measurement error in covariates can negatively affect the accuracy of the estimates if not treated properly. Variable selection for longitudinal data that suffers from missing values and measurement error in covariates is not well explored in literature. In this article, we propose and develop a simultaneous variable selection and parameter estimation method for longitudinal data that suffers from intermittent missing values and covariates measurement error. The penalized weighted generalized estimating equations is used to account for the missingness in the longitudinal response, and simulation selection extrapolation techniques is used to account for the covariate measurement error. A simulation study is conducted to assess the performance of the proposed method. Also, the applicability of the proposed method is demonstrated using the Longitudinal Internet Studies for Social sciences data.
引用
收藏
页数:12
相关论文
共 26 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Using generalized estimating equations and extensions in randomized trials with missing longitudinal patient reported outcome data [J].
Bell, Melanie L. ;
Horton, Nicholas J. ;
Dhillon, Haryana M. ;
Bray, Victoria J. ;
Vardy, Janette .
PSYCHO-ONCOLOGY, 2018, 27 (09) :2125-2131
[3]   Forward selection of explanatory variables [J].
Blanchet, F. Guillaume ;
Legendre, Pierre ;
Borcard, Daniel .
ECOLOGY, 2008, 89 (09) :2623-2632
[4]  
Buonaccorsi JP, 2010, INTERD STAT, P1, DOI 10.1201/9781420066586
[5]  
Carroll R. J., 2006, Measurement Error in Nonlinear Models: A Modern Perspective, V2
[6]  
Diggle P., 2002, ANAL LONGITUDINAL DA
[7]  
El-Zayat N. I., 2018, Fitting linear mixed model for incomplete multivariate longitudinal data
[8]  
Fan Jianqing., 2006, STAT CHALLENGES HIGH
[9]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[10]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360