Solution to the Rhoades' problem under minimal metric structure

被引:1
|
作者
Savaliya, Jayesh [1 ]
Gopal, Dhananjay [2 ]
Moreno, Juan Martinez [3 ]
Srivastava, Shailesh Kumar [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Math, Surat 395007, India
[2] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
[3] Univ Jaen, Dept Math, Jaen 23071, Spain
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 03期
关键词
Discontinuity; Minimal metric; Non-triangular metric; Fixed point; MEIR-KEELER TYPE; FIXED-POINTS; DISCONTINUITY; CONTRACTIONS; DEFINITIONS;
D O I
10.1007/s41478-024-00722-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An open problem proposed by Rhoades (Contemp Math 72:233-245, 1988) is the following, "Is there a contractive condition that guarantees a fixed point's existence but does not require the mapping to be continuous at that point?" In this paper, we generalize a result of Bisht (J Fixed Point Theory Appl 25:11, 2023), which allows us to find a new solution to this open problem. Furthermore, we have validated the result generated in the article by producing several examples.
引用
收藏
页码:1787 / 1799
页数:13
相关论文
共 50 条
  • [41] On quasi-contractive multivalued mappings' open problem in complete metric spaces
    Roldan Lopez de Hierro, Antonio Francisco
    Khojasteh, Farhsid
    Moradi, Sirous
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7147 - 7157
  • [42] A Fixed Point Problem with Constraint Inequalities via a Contraction in Incomplete Metric Spaces
    Ahmadi, Z.
    Lashkaripour, R.
    Baghani, H.
    FILOMAT, 2018, 32 (09) : 3365 - 3379
  • [43] Fixed point and a Cantilever beam problem in a partial b-metric space
    Tomar, Anita
    Joshi, Meena
    Bhatt, Venkatesh
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 506 - 518
  • [44] LUC'S VARIATIONAL RELATION PROBLEM UNDER SOME LOWER SEMICONTINUITY ASSUMPTION
    Balaj, Mircea
    Lin, Lai-Jiu
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (01) : 39 - 54
  • [45] Properties of a Class of Self-Maps in Metric Spaces Under Perturbations
    De la Sen, M.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 2057 - 2061
  • [46] Fixed Point Results under Generalized c-Distance in Cone b-Metric Spaces Over Banach Algebras
    Firozjah, Ataollah Arabnia
    Rahimi, Hamidreza
    De la Sen, Manuel
    Rad, Ghasem Soleimani
    AXIOMS, 2020, 9 (01)
  • [47] A FIXED POINT PROBLEM VIA SIMULATION FUNCTIONS IN INCOMPLETE METRIC SPACES WITH ITS APPLICATION
    Lashkaripour, R.
    Baghani, H.
    Ahmadi, Z.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 220 - 231
  • [48] Fuzzy Metric Space Induced by Intuitionistic Fuzzy Points and its Application to the Orienteering Problem
    Verma, Madhushi
    Shukla, K. K.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (02) : 483 - 488
  • [49] A fixed point approach for tuning circuit problem in dislocated b-metric spaces
    Younis, Mudasir
    Singh, Deepak
    Abdou, Afrah A. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2234 - 2253
  • [50] Solution to Integral Equation in an O-Complete Branciari b-Metric Spaces
    Dhanraj, Menaha
    Gnanaprakasam, Arul Joseph
    Mani, Gunaseelan
    Ege, Ozgur
    De la Sen, Manuel
    AXIOMS, 2022, 11 (12)