Solution to the Rhoades' problem under minimal metric structure

被引:1
|
作者
Savaliya, Jayesh [1 ]
Gopal, Dhananjay [2 ]
Moreno, Juan Martinez [3 ]
Srivastava, Shailesh Kumar [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Math, Surat 395007, India
[2] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
[3] Univ Jaen, Dept Math, Jaen 23071, Spain
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 03期
关键词
Discontinuity; Minimal metric; Non-triangular metric; Fixed point; MEIR-KEELER TYPE; FIXED-POINTS; DISCONTINUITY; CONTRACTIONS; DEFINITIONS;
D O I
10.1007/s41478-024-00722-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An open problem proposed by Rhoades (Contemp Math 72:233-245, 1988) is the following, "Is there a contractive condition that guarantees a fixed point's existence but does not require the mapping to be continuous at that point?" In this paper, we generalize a result of Bisht (J Fixed Point Theory Appl 25:11, 2023), which allows us to find a new solution to this open problem. Furthermore, we have validated the result generated in the article by producing several examples.
引用
收藏
页码:1787 / 1799
页数:13
相关论文
共 50 条
  • [11] Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space
    Mani, Gunaseelan
    Janardhanan, Gopinath
    Ege, Ozgur
    Gnanaprakasam, Arul Joseph
    De la sen, Manuel
    SYMMETRY-BASEL, 2022, 14 (12):
  • [12] On the Fixed Circle Problem on Metric Spaces and Related Results
    Mlaiki, Nabil
    Ozgur, Nihal
    Tas, Nihal
    Santina, Dania
    AXIOMS, 2023, 12 (04)
  • [13] On an open problem in rectangular b-metric space
    Mitrović Z.D.
    The Journal of Analysis, 2017, 25 (1) : 135 - 137
  • [14] Terminal Value Problem for Implicit Katugampola Fractional Differential Equations in b-Metric Spaces
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    Karapinar, Erdal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [15] Solution of an integral equation in G-metric spaces
    Gnanaprakasam, Arul Joseph
    Nallaselli, Gunasekaran
    Mani, Gunaseelan
    Ege, Ozgur
    FILOMAT, 2023, 37 (24) : 8279 - 8287
  • [16] UNIQUE POSITIVE DEFINITE SOLUTION OF NON-LINEAR MATRIX EQUATION ON RELATIONAL METRIC SPACES
    Shil, Sourav
    Nashine, Hemant Kumar
    FIXED POINT THEORY, 2023, 24 (01): : 367 - 382
  • [17] On free actions, minimal flows, and a problem by Ellis
    Pestov, VG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) : 4149 - 4165
  • [18] A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM
    H.R.SAHEBI
    A.RAZANI
    Acta Mathematica Scientia, 2013, 33 (06) : 1598 - 1614
  • [19] A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM
    Sahebi, H. R.
    Razani, A.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (06) : 1598 - 1614
  • [20] A STUDY OF THE COUPLED FIXED POINT PROBLEM FOR OPERATORS SATISFYING A MAX-SYMMETRIC CONDITION IN b-METRIC SPACES WITH APPLICATIONS TO A BOUNDARY VALUE PROBLEM
    Petrusel, Adrian
    Petrusel, Gabriela
    Samet, Bessem
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 501 - 516