Data assimilation experiments inform monitoring needs for near-term ecological forecasts in a eutrophic reservoir

被引:7
作者
Wander, Heather L. [1 ]
Thomas, R. Quinn [1 ,2 ]
Moore, Tadhg N. [1 ,2 ]
Lofton, Mary E. [1 ]
Breef-Pilz, Adrienne [1 ]
Carey, Cayelan C. [1 ]
机构
[1] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Forest Resources & Environm Conservat, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
data collection frequency; FLARE; high-frequency sensors; initial conditions; observations; uncertainty; water temperature; WATER-QUALITY; CLIMATE-CHANGE; IN-SITU; LAKE; TEMPERATURE; MODEL; REVEALS;
D O I
10.1002/ecs2.4752
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near-term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near-term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost-prohibitive or impossible for forecasting ecological variables that lack high-frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1- to 35-day-ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1-day-ahead forecast root mean square error (RMSE) of 0.81 degrees C, mean 7-day RMSE of 1.15 degrees C, and mean 35-day RMSE of 1.94 degrees C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1- to 7-day-ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8- to 35-day-ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8-day forecast horizon during mixed spring/autumn periods and 5- to 14-day-ahead horizons during the summer-stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high-frequency sensor data.
引用
收藏
页数:23
相关论文
共 102 条
[1]   Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4 [J].
Baracchini, Theo ;
Chu, Philip Y. ;
Sukys, Jonas ;
Lieberherr, Gian ;
Wunderle, Stefan ;
Wuest, Alfred ;
Bouffard, Damien .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1267-1284
[2]   Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics [J].
Baracchini, Theo ;
Wuest, Alfred ;
Bouffard, Damien .
WATER RESEARCH, 2020, 172
[3]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[4]   A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network [J].
Bruce, Louise C. ;
Frassl, Marieke A. ;
Arhonditsis, George B. ;
Gal, Gideon ;
Hamilton, David P. ;
Hanson, Paul C. ;
Hetherington, Amy L. ;
Melack, John M. ;
Read, Jordan S. ;
Rinke, Karsten ;
Rigosi, Anna ;
Trolle, Dennis ;
Winslow, Luke ;
Adrian, Rita ;
Ayala, Ana I. ;
Bocaniov, Serghei A. ;
Boehrer, Bertram ;
Boon, Casper ;
Brookes, Justin D. ;
Bueche, Thomas ;
Busch, Brendan D. ;
Copetti, Diego ;
Cortes, Alicia ;
de Eyto, Elvira ;
Elliott, J. Alex ;
Gallina, Nicole ;
Gilboa, Yael ;
Guyennon, Nicolas ;
Huang, Lei ;
Kerimoglu, Onur ;
Lenters, John D. ;
MacIntyre, Sally ;
Makler-Pick, Vardit ;
McBride, Chris G. ;
Moreira, Santiago ;
Oezkundakci, Deniz ;
Pilotti, Marco ;
Rueda, Francisco J. ;
Rusak, James A. ;
Samal, Nihar R. ;
Schmid, Martin ;
Shatwell, Tom ;
Snorthheim, Craig ;
Soulignac, Frederic ;
Valerio, Giulia ;
van der Linden, Leon ;
Vetter, Mark ;
Vincon-Leite, Brigitte ;
Wang, Junbo ;
Weber, Michael .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 102 :274-291
[5]  
Carey Cayelan C, 2022, EDI - LTER, DOI 10.6073/PASTA/C4C45B5B10B4CB4CD4B5E613C3EFFBD0
[6]  
Carey Cayelan C, 2022, EDI - LTER, DOI 10.6073/PASTA/352735344150F7E77D2BC18B69A22412
[7]  
Carey Cayelan C, 2023, EDI - LTER, DOI 10.6073/PASTA/4182DE376FDE52E15D493FDD9F26D0C7
[8]  
Carey Cayelan C, 2022, EDI - LTER, DOI 10.6073/PASTA/917B3947D91470EECF979E9297ED4D2E
[9]   Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwaters [J].
Carey, Cayelan C. ;
Hanson, Paul C. ;
Thomas, R. Quinn ;
Gerling, Alexandra B. ;
Hounshell, Alexandria G. ;
Lewis, Abigail S. L. ;
Lofton, Mary E. ;
McClure, Ryan P. ;
Wander, Heather L. ;
Woelmer, Whitney M. ;
Niederlehner, B. R. ;
Schreiber, Madeline E. .
GLOBAL CHANGE BIOLOGY, 2022, 28 (16) :4861-4881
[10]   Advancing lake and reservoir water quality management with near-term, iterative ecological forecasting [J].
Carey, Cayelan C. ;
Woelmer, Whitney M. ;
Lofton, Mary E. ;
Figueiredo, Renato J. ;
Bookout, Bethany J. ;
Corrigan, Rachel S. ;
Daneshmand, Vahid ;
Hounshell, Alexandria G. ;
Howard, Dexter W. ;
Lewis, Abigail S. L. ;
McClure, Ryan P. ;
Wander, Heather L. ;
Ward, Nicole K. ;
Thomas, R. Quinn .
INLAND WATERS, 2022, 12 (01) :107-120