Roman [1,2]-domination of graphs

被引:0
作者
Hao, Guoliang [1 ,2 ]
Chen, Xiaodan [3 ]
Sheikholeslami, Seyed Mahmoud [4 ]
Jiang, Haining [1 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Shandong, Peoples R China
[2] East China Univ Technol, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
[3] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
基金
中国国家自然科学基金;
关键词
Roman [1,2]-domination; 1,2]-domination; Roman domination; NP-complete; DOMINATION;
D O I
10.1016/j.amc.2023.128520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A [1, 2]- set of a graph G is a set S of vertices of G if every vertex not in.. has one or two neighbors in S The [1, 2]- domination number gamma([1,2])(G) of.. equals the minimum cardinality of a [1, 2]- set of G A Roman [1, 2]- dominating function (R[1, 2] DF) on a graph G is a function f from the vertex set V of G to the set {0, 1, 2} such that any vertex assigned 0 under f has one or two neighbors assigned 2. The weight of an R[1, 2] DF f is the sum Sigma(x is an element of v) f(x). The Roman [1, 2]-domination number gamma(R[1,2])(G) of G equals the minimum weight of an R[1, 2] DF on G. In this paper, we prove that the decision problem on the Roman [1, 2]- domination is NP-complete for bipartite and chordal graphs. Moreover, we give some bounds on the Roman [1, 2]- domination number. In particular, we show that for any nontrivial tree T,gamma(R[1,2])(T) >= gamma(R[1,2])(T) + 1 and characterize all trees obtaining equality in this bound.
引用
收藏
页数:13
相关论文
共 18 条
[1]   (1, j)-set problem in graphs [J].
Bishnu, Arijit ;
Dutta, Kunal ;
Ghosh, Arijit ;
Paul, Subhabrata .
DISCRETE MATHEMATICS, 2016, 339 (10) :2515-2525
[2]   EXTREMAL GRAPHS FOR A BOUND ON THE ROMAN DOMINATION NUMBER [J].
Bouchou, Ahmed ;
Blidia, Mostafa ;
Chellali, Mustapha .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) :771-785
[3]   EXTREMAL PROBLEMS FOR ROMAN DOMINATION [J].
Chambers, Erin W. ;
Kinnersley, Bill ;
Prince, Noah ;
West, Douglas B. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1575-1586
[4]  
Chellai M., 2020, J COMBIN MATH COMB C, V115, P141
[5]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984
[6]  
Chellali M., STRUCTURES DOMINATIO, P2021
[7]  
Chellali M., 2020, Topics in Domination in Graphs, P365
[8]   The Roman Domatic Problem in Graphs and Digraphs: A Survey [J].
Chellali, Mustapha ;
Rad, Nader Jafari ;
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) :861-891
[9]   [1,2]-sets in graphs [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2885-2893
[10]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22