Balancing proton and mass transfers in cathode catalyst layer of high-temperature proton exchange membrane fuel cell via gradient porous structure design

被引:9
作者
Li, Genghang [1 ,2 ]
Deng, Chengwei [2 ]
Ji, Feng [2 ]
Zheng, Bowen [2 ]
Wang, Xingjian [2 ]
Wang, Tao [2 ]
机构
[1] Shanghai Univ Elect Power, Sch Environm & Chem Engn, Shanghai 201306, Peoples R China
[2] Shanghai Inst Space Power Sources, State Key Lab Space Power Sources Technol, Shanghai 200245, Peoples R China
关键词
High temperature proton exchange membrane; fuel cell; Cathode catalyst layer; Gradient porous structure; Phosphoric acid loading; Reducing polarization; POLYMER ELECTROLYTE MEMBRANE; PHOSPHORIC-ACID; PERFORMANCE; OPTIMIZATION; MIGRATION; MECHANISM;
D O I
10.1016/j.jpowsour.2023.233807
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The porous structure within the cathode catalyst layers (CLs) plays a crucial role in facilitating phosphoric acid (PA) invasion and oxygen diffusion, which was essential for establishing the triple-phase boundaries (TPBs) in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In this work, a gradient porous structure is deliberately constructed within the cathode CL by carefully controlling the microstructures of the double CLs. The effects of pore diameter distribution in the cathode CL and PA content in the membrane electrode assembly (MEA) on the single cell performance of HT-PEMFC are systematically investigated. By incorporating an appropriate amount of PA in the MEA, along with the optimized gradient porous structure, the inner pores effectively stored acid and prevented its outward diffusion. Simultaneously, the pores in the outer CL provided additional pathways for oxygen transfer. Consequently, the optimized gradient porous structure enhanced the peak power density of H2/Air fuel cells to 0.510 W cm-2 at a Pt loading of 0.5 mgPt cm-2, a notable improvement compared to 0.396 W cm-2 of the traditional single CL. The mechanism analysis further reveals that the cathode CL with gradient porous structure can successfully balance proton transfer and mass transfer, hence reducing the polarizations in fuel cell.
引用
收藏
页数:10
相关论文
共 33 条
[1]   A comprehensive review of PBI-based high temperature PEM fuel cells [J].
Araya, Samuel Simon ;
Zhou, Fan ;
Liso, Vincenzo ;
Sahlin, Simon Lennart ;
Vang, Jakob Rabjerg ;
Thomas, Sobi ;
Gao, Xin ;
Jeppesen, Christian ;
Kaer, Soren Knudsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21310-21344
[2]   Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes [J].
Becker, Hans ;
Cleemann, Lars Nilausen ;
Aili, David ;
Jensen, Jens Oluf ;
Li, Qingfeng .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 82 :21-24
[3]   Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers [J].
Bevilacqua, N. ;
George, M. G. ;
Galbiati, S. ;
Bazylak, A. ;
Zeis, R. .
ELECTROCHIMICA ACTA, 2017, 257 :89-98
[4]   Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges [J].
Bose, Saswata ;
Kuila, Tapas ;
Thi Xuan Lien Nguyen ;
Kim, Nam Hoon ;
Lau, Kin-tak ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) :813-843
[5]   Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances [J].
Fouzai, Imen ;
Gentil, Solene ;
Bassetto, Victor Costa ;
Silva, Wanderson Oliveira ;
Maher, Raddaoui ;
Girault, Hubert H. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (18) :11096-11123
[6]   Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs [J].
Guan, Shumeng ;
Zhou, Fen ;
Tan, Jinting ;
Pan, Mu .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (06) :839-845
[7]   High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies [J].
Haider, Rizwan ;
Wen, Yichan ;
Ma, Zi-Feng ;
Wilkinson, David P. ;
Zhang, Lei ;
Yuan, Xianxia ;
Song, Shuqin ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (02) :1138-1187
[8]   The impact of the catalyst layer structure on phosphoric acid migration in HT-PEFC - An operando X-ray tomographic microscopy study [J].
Halter, J. ;
Bevilacqua, N. ;
Zeis, R. ;
Schmidt, T. J. ;
Buchi, F. N. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 859
[9]   Wetting properties of porous high temperature polymer electrolyte fuel cells materials with phosphoric acid [J].
Halter, J. ;
Gloor, T. ;
Amoroso, B. ;
Schmidt, T. J. ;
Buchi, F. N. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (24) :13126-13134
[10]   Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells [J].
Halter, J. ;
Marone, F. ;
Schmidt, T. J. ;
Buchi, F. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) :F1176-F1183