Elevating Lithium-Sulfur Battery Durability through Samarium Oxide/Ketjen Black Modified Separator

被引:3
作者
Zheng, Liyuan [1 ]
Zhu, Zhijun [1 ]
Kuai, Yutong [1 ]
Chen, Guihuan [1 ]
Yu, Zhihong [1 ]
Wang, Yi [2 ]
Li, Aiju [1 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] Zhongkai Univ Agr & Engn Guangzhou, Dept Mech & Elect Engn, Guangzhou 510225, Peoples R China
关键词
Lithium-sulfur battery; Samarium Oxide; oxygen vacancy; modified separator; DOPED CARBON; POLYHEDRA;
D O I
10.1002/chem.202303500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries have garnered significant attention as a promising next-generation battery technology due to their potential for high energy density. However, their practical application is hampered by slow reaction kinetics and the shuttle effect of lithium polysulfide intermediates. In this context, the authors introduce a pioneering solution in the form of a novel porous carbon nanostructure modified with samarium oxide, denoted as Sm2O3/KB. The material has a highly polar surface, allowing lithium polysulfide to be chemisorbed efficiently. The unsaturated sites provided by the oxygen vacancies of Sm2O3 promote Li2S nucleation, lowering the reaction energy barrier and accelerating Li2S dissolution. The porous structure of Ketjen Black provides a highly conductive channel for electron transport and effectively traps polysulfides. Meanwhile, the batteries with Sm2O3/KB/PP spacers exhibited remarkable electrochemical performances, including a low-capacity decay rate of only 0.046 % for 1000 cycles at 2 C and an excellent multiplicative performance of 624 mAh g-1 at 3 C. This work opens up a new avenue for the potential use of rare-earth-based materials in lithium-sulfur batteries. image
引用
收藏
页数:10
相关论文
共 44 条
[1]   Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal- Organic Frameworks for High-Performance Lithium Sulfur Batteries [J].
An, Yongling ;
Zhang, Zhen ;
Fei, Huifang ;
Xiong, Shenglin ;
Ji, Bing ;
Feng, Jinkui .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) :12400-12407
[2]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.94, 10.1038/NENERGY.2016.94]
[3]   Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction [J].
Cao, Yu ;
Wang, Meidi ;
Wang, Hongjian ;
Han, Chengyu ;
Pan, Fusheng ;
Sun, Jie .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[4]   Rare-Earth Doped Configurational Entropy Stabilized High Entropy Spinel Oxide as an Efficient Anchoring/Catalyst Functional Interlayer for High-Performance Lithium-Sulfur Battery [J].
Chatterjee, Arindam ;
Ganguly, Dipsikha ;
Sundara, Ramaprabhu ;
Bhattacharya, Subramshu S. .
BATTERIES & SUPERCAPS, 2023, 6 (07)
[5]  
Chen Z., 2023, CHEM-EUR J, P29
[6]   CeO2 decorated graphene as separator modification material for capture and boost conversion of polysulfide in lithium-sulfur batteries [J].
Cheng, Pu ;
Guo, Pengqian ;
Sun, Kai ;
Zhao, Yonggang ;
Liu, Dequan ;
He, Deyan .
JOURNAL OF MEMBRANE SCIENCE, 2021, 619 (619)
[7]   Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions [J].
Chu, Hyunwon ;
Noh, Hyungjun ;
Kim, Yun-Jung ;
Yuk, Seongmin ;
Lee, Ju-Hyuk ;
Lee, Jinhong ;
Kwack, Hobeom ;
Kim, YunKyoung ;
Yang, Doo-Kyung ;
Kim, Hee-Tak .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR [J].
Ding, Danni ;
Shen, Kui ;
Chen, Xiaodong ;
Chen, Huirong ;
Chen, Junying ;
Fan, Ting ;
Wu, Rongfang ;
Li, Yingwei .
ACS CATALYSIS, 2018, 8 (09) :7879-7888
[9]   A review on theoretical models for lithium-sulfur battery cathodes [J].
Feng, Shuai ;
Fu, Zhong-Heng ;
Chen, Xiang ;
Zhang, Qiang .
INFOMAT, 2022, 4 (03)
[10]   Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries [J].
Fu, Ang ;
Wang, Chaozhi ;
Pei, Fei ;
Cui, Jingqin ;
Fang, Xiaoliang ;
Zheng, Nanfeng .
SMALL, 2019, 15 (10)