Convergence of inductive sequences of spectral triples for the spectral propinquity

被引:2
作者
Farsi, Carla [1 ]
Latremoliere, Frederic [2 ]
Packer, Judith [1 ]
机构
[1] Univ Colorado Boulder, Dept Math, Boulder, CO 80309 USA
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
Spectral triples; Noncommutative metric geometry; Quantum Gromov-Hausdorff; distance; Monge-Kantorovich distance; Quantum metric spaces; Quantum tori; Noncommutative solenoids; Bunce-Deddens algebras; C-ASTERISK-ALGEBRAS; DIRAC OPERATORS; METRIC-SPACES; QUANTUM TORI; HAUSDORFF; MODULES;
D O I
10.1016/j.aim.2023.109442
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of metric geometry, we introduce a new necessary and sufficient condition for the convergence of an inductive sequence of quantum compact metric spaces for the Gromov-Hausdorff propinquity, which is a noncommutative analogue of the Gromov-Hausdorff distance for compact metric spaces. This condition is expressed in terms of certain *morphisms called bridge builders and is easy to verify in many examples, such as quantum compact metric spaces associated to AF algebras or certain twisted convolution C*-algebras of discrete inductive limit groups. Our condition also implies the convergence of an inductive sequence of spectral triples in the sense of the spectral propinquity, a generalization of the Gromov-Hausdorff propinquity on quantum compact metric spaces to the space of metric spectral triples. In particular we show the convergence of the state spaces of the underlying C*-algebras as quantum compact metric spaces, and also the convergence of the quantum dynamics induced by the Dirac operators in the spectral triples. We apply these results to new classes of inductive limit of even spectral triples on noncommutative solenoids and certain Bunce-Deddens C*algebras. Our construction, which involves length functions with bounded doubling, adds geometric information and high lights the structure of these twisted group C*-algebras as inductive limits. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 61 条
[1]   Equilibrium states on higher-rank Toeplitz non-commutative solenoids [J].
Afsar, Zahra ;
An Huef, Astrid ;
Raeburn, Iain ;
Sims, Aidan .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (11) :2881-2912
[2]   The Podles Spheres Converge to the Sphere [J].
Aguilar, Konrad ;
Kaad, Jens ;
Kyed, David .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (03) :1029-1061
[3]   Bunce-Deddens Algebras as Quantum Gromov-Hausdorff Distance Limits of Circle Algebras [J].
Aguilar, Konrad ;
Latremoliere, Frederic ;
Rainone, Timothy .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (01)
[4]   The Podles sphere as a spectral metric space [J].
Aguilar, Konrad ;
Kaad, Jens .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 :260-278
[5]   Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity [J].
Aguilar, Konrad ;
Latremoliere, Frederic .
STUDIA MATHEMATICA, 2015, 231 (02) :149-193
[6]   Spectral triples for noncommutative solenoidal spaces from self-coverings [J].
Aiello, Valeriano ;
Guido, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1378-1412
[7]  
[Anonymous], 2004, MEM AM MATH SOC, V168, P1
[8]   Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence [J].
Bassi, Jacopo ;
Conti, Roberto ;
Farsi, Carla ;
Latremoliere, Frederic .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (04) :1488-1530
[9]  
Bertozzini P, 2006, OSAKA J MATH, V43, P327
[10]   The Toeplitz noncommutative solenoid and its Kubo-Martin-Schwinger states [J].
Brownlowe, Nathan ;
Hawkins, Mitchell ;
Sims, Aidan .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :105-131