A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
作者
Konno, Norio [1 ]
Matsue, Kaname [2 ,3 ]
Segawa, Etsuo [4 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama 2408501, Japan
[2] Kyushu Univ, Inst Math Ind, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[4] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama 2408501, Japan
基金
日本学术振兴会;
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems; CENTRAL LIMIT-THEOREMS;
D O I
10.1007/s10955-023-03211-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M is an element of N controlling a decoherence effect; if M = 1, the walk coincides with an open quantum random walk, while M = infinity, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z for M = infinity and M = 1 and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M = 2, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato's perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
页数:31
相关论文
共 17 条
[1]   QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS [J].
Ambainis, Andris .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :507-518
[2]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852
[3]   Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records [J].
Attal, Stephane ;
Guillotin-Plantard, Nadine ;
Sabot, Christophe .
ANNALES HENRI POINCARE, 2015, 16 (01) :15-43
[4]   Quantum random walks with decoherent coins [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW A, 2003, 67 (03) :9
[5]   Open Quantum Random Walks and Quantum Markov Chains [J].
Dhahri, A. ;
Mukhamedov, F. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (02) :137-142
[6]   A dynamical system induced by quantum walk [J].
Higuchi, Yusuke ;
Segawa, Etsuo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (39)
[7]  
Kato T., 1982, A Short Introduction to Perturbation Theory for Linear Operators, DOI [10.1007/978-1-4612-5700-4, DOI 10.1007/978-1-4612-5700-4]
[8]   Decoherence in quantum walks - A review [J].
Kendon, Viv .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (06) :1169-1220
[9]   Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices [J].
Ko, Chul Ki ;
Konno, Norio ;
Segawa, Etsuo ;
Yoo, Hyun Jae .
JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (03) :710-735
[10]   Walk/Zeta Correspondence [J].
Komatsu, Takashi ;
Konno, Norio ;
Sato, Iwao .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (02)