Redistributing the Precision and Content in 3D-LUT-based Inverse Tone-mapping for HDR/WCG Display

被引:1
作者
Guo, Cheng [1 ]
Fan, Leidong [2 ]
Zhang, Qian [3 ]
Liu, Hanyuan [3 ]
Liu, Kanglin [4 ]
Jiang, Xiuhua [4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China
[2] Peking Univ, Shenzhen Grad Sch, Sch Elect & Comp Engn, Beijing, Peoples R China
[3] Acad Broadcasting Planning, Beijing, Peoples R China
[4] Peng Cheng Lab, Shenzhen, Peoples R China
来源
20TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, CVMP 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Look-up Table; Inverse Tone-mapping; High Dynamic Range; Wide Color Gamut; Deep Learning; STYLE;
D O I
10.1145/3626495.3626503
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ITM(inverse tone-mapping) converts SDR (standard dynamic range) footage to HDR/WCG (high dynamic range /wide color gamut) for media production. It happens not only when remastering legacy SDR footage in front-end content provider, but also adapting on-the-air SDR service on user-end HDR display. The latter requires more efficiency, thus the pre-calculated LUT (look-up table) has become a popular solution. Yet, conventional fixed LUT lacks adaptability, so we learn from research community and combine it with AI. Meanwhile, higher-bit-depth HDR/WCG requires larger LUT thanSDR, so we consult traditional ITM for an efficiency-performance trade-off: We use 3 smaller LUTs, each has a non-uniform packing (precision) respectively denser in dark, middle and bright luma range. In this case, their results will have less error only in their own range, so we use a contribution map to combine their best parts to final result. With the guidance of this map, the elements (content) of 3 LUTs will also be redistributed during training. We conduct ablation studies to verify method's effectiveness, and subjective and objective experiments to show its practicability. Code is available at: https://github.com/AndreGuo/ITMLUT.
引用
收藏
页数:10
相关论文
共 78 条
[61]   Neural Color Operators for Sequential Image Retouching [J].
Wang, Yili ;
Li, Xin ;
Xu, Kun ;
He, Dongliang ;
Zhang, Qi ;
Li, Fu ;
Ding, Errui .
COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 :38-55
[62]   FMNet: Frequency-Aware Modulation Network for SDR-to-HDR Translation [J].
Xu, Gang ;
Hou, Qibin ;
Zhang, Le ;
Cheng, Ming-Ming .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, :6425-6435
[63]  
Xu G, 2023, Arxiv, DOI arXiv:2207.03367
[64]  
Xu KP, 2024, Arxiv, DOI arXiv:2307.03394
[65]  
Xu YC, 2019, 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), P142, DOI [10.1109/BigMM.2019.00-32, 10.1109/BigMM.2019.00030]
[66]  
Xu YC, 2019, IEEE IMAGE PROC, P4365, DOI [10.1109/ICIP.2019.8803540, 10.1109/icip.2019.8803540]
[67]   Automatic Photo Adjustment Using Deep Neural Networks [J].
Yan, Zhicheng ;
Zhang, Hao ;
Wang, Baoyuan ;
Paris, Sylvain ;
Yu, Yizhou .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (02)
[68]   SepLUT: Separable Image-Adaptive Lookup Tables for Real-Time Image Enhancement [J].
Yang, Canqian ;
Jin, Meiguang ;
Xu, Yi ;
Zhang, Rui ;
Chen, Ying ;
Liu, Huaida .
COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 :201-217
[69]   AdaInt: Learning Adaptive Intervals for 3D Lookup Tables on Real-time Image Enhancement [J].
Yang, Canqian ;
Jin, Meiguang ;
Jia, Xu ;
Xu, Yi ;
Chen, Ying .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :17501-17510
[70]  
Yao Mingde, 2023, IEEE Transactions on Multimedia