An End-to-End Human Simulator for Task-Oriented Multimodal Human-Robot Collaboration

被引:1
|
作者
Shervedani, Afagh Mehri [1 ]
Li, Siyu [1 ]
Monaikul, Natawut [2 ]
Abbasi, Bahareh [3 ]
Di Eugenio, Barbara [2 ]
Zefran, Milos [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Robot Lab, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Comp Sci, Nat Language Proc Lab, Chicago, IL 60607 USA
[3] Calif State Univ Channel Islands, Dept Comp Sci, Camarillo, CA 93012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/RO-MAN57019.2023.10309444
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a neural network-based user simulator that can provide a multimodal interactive environment for training Reinforcement Learning (RL) agents in collaborative tasks involving multiple modes of communication. The simulator is trained on the existing ELDERLY-AT-HOME corpus and accommodates multiple modalities such as language, pointing gestures, and haptic-ostensive actions. The paper also presents a novel multimodal data augmentation approach, which addresses the challenge of using a limited dataset due to the expensive and time-consuming nature of collecting human demonstrations. Overall, the study highlights the potential for using RL and multimodal user simulators in developing and improving domestic assistive robots.
引用
收藏
页码:614 / 620
页数:7
相关论文
共 50 条
  • [1] Role Switching in Task-Oriented Multimodal Human-Robot Collaboration
    Monaikul, Natawut
    Abbasi, Bahareh
    Rysbek, Zhanibek
    Di Eugenio, Barbara
    Zefran, Milos
    2020 29TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2020, : 1150 - 1156
  • [2] XBG: End-to-End Imitation Learning for Autonomous Behaviour in Human-Robot Interaction and Collaboration
    Cardenas-Perez, Carlos
    Romualdi, Giulio
    Elobaid, Mohamed
    Dafarra, Stefano
    L'Erario, Giuseppe
    Traversaro, Silvio
    Morerio, Pietro
    Del Bue, Alessio
    Pucci, Daniele
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (12): : 11617 - 11624
  • [3] End User Interfaces for Human-Robot Collaboration
    White, Nathan Thomas
    Mutlu, Bilge
    COMPANION OF THE 2024 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, HRI 2024 COMPANION, 2024, : 157 - 159
  • [4] HOSA: An End-to-End Safety System for Human-Robot Interaction
    Gibson Barbosa
    Carolina Ledebour
    Assis T. de Oliveira Filho
    Iago Richard Rodrigues
    Djamel Sadok
    Judith Kelner
    Ricardo Souza
    Journal of Intelligent & Robotic Systems, 2022, 105
  • [5] HOSA: An End-to-End Safety System for Human-Robot Interaction
    Barbosa, Gibson
    Ledebour, Carolina
    de Oliveira Filho, Assis T.
    Rodrigues, Iago Richard
    Sadok, Djamel
    Kelner, Judith
    Souza, Ricardo
    Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105 (04):
  • [6] HOSA: An End-to-End Safety System for Human-Robot Interaction
    Barbosa, Gibson
    Ledebour, Carolina
    de Oliveira Filho, Assis T.
    Rodrigues, Iago Richard
    Sadok, Djamel
    Kelner, Judith
    Souza, Ricardo
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (04)
  • [7] Topic model for personalized end-to-end task-oriented dialogue
    Gou, Zhinan
    Li, Yan
    Liu, Yuanzhen
    Gao, Kai
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [8] End-to-End Task-Oriented Dialogue Systems Based on Schema
    Imrattanatrai, Wiradee
    Fukuda, Ken
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 10148 - 10161
  • [9] Learning Personalized End-to-End Task-Oriented Dialogue Generation
    Zhang, Bowen
    Xu, Xiaofei
    Li, Xutao
    Ye, Yunming
    Chen, Xiaojun
    Sun, Lianjie
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I, 2019, 11838 : 55 - 66
  • [10] Human motion end point prediction in human-robot collaboration
    Chen Y.
    Liu J.
    Hu L.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (01): : 35 - 43