A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries

被引:6
作者
Nazarov, Eugene E. [1 ]
Dembitskiy, Artem D. [1 ]
Trussov, Ivan A. [1 ]
Tyablikov, Oleg A. [1 ]
Glazkova, Iana S. [2 ]
Alexey, Sobolev V. [2 ]
Presniakov, Igor A. [2 ]
Morozov, Anatolii V. [1 ,2 ]
Mikheev, Ivan V. [2 ]
Nikitina, Victoria A. [1 ]
Abakumov, Artem M. [1 ]
Antipov, Evgeny V. [1 ,2 ]
Fedotov, Stanislav S. [1 ]
机构
[1] Skoltech Ctr Energy Sci & Technol, Skolkovo Inst Sci & Technol, Bolshoi Blvd 30 bld 1, Moscow 121205, Russia
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
来源
ENERGY ADVANCES | 2023年 / 2卷 / 02期
关键词
DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL PERFORMANCE; DIFFUSION-COEFFICIENT; HIGH-RESOLUTION; IN-SITU; LITHIUM; ELECTRODE; DEFECTS; LIFE0.5MN0.5PO4; INTERCALATION;
D O I
10.1039/d2ya00292b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triphylite-structured lithium iron/manganese phosphates have captured rapt attention as prospective positive electrodes for Li-ion batteries, targeted to automotive applications. Here we report on a strategy to improve the power characteristics of Mn-doped LiFePO4 cathode materials by introducing extra Li at the transition metal site (Li-rich) via a facile solvothermal synthesis route. The crystal structure refinement based on joint synchrotron and neutron powder diffraction data unambiguously confirmed the formation of a Li-rich phase, with additional validation coming from scanning transmission electron microscopy, electron energy loss spectroscopy, and 57Fe Mossbauer spectroscopy. The particularly created defect structure of the Li-rich Li1+delta(Fe0.5Mn0.5)1-delta PO4 with additional Li+ ions residing at the 3d-metal site enables the extended solid solution region of the Li ion de/intercalation mechanism established using operando synchrotron X-ray powder diffraction. The suggested strategy offers an advanced electrochemical behavior of the materials that exhibit specific capacities of over 158 mAh g-1 at C/10 and 120 mAh g-1 at 10C, with retention of 84 +/- 4% after 500 cycles at 10C. Introduction of additional Li ions into the LiFe0.5Mn0.5PO4 crystal structure results in an extended solid solution region of the Li+ de/intercalation process.
引用
收藏
页码:328 / 337
页数:10
相关论文
共 50 条
  • [41] Ni-Ion-Chelating Strategy for Mitigating the Deterioration of Li-Ion Batteries with Nickel-Rich Cathodes
    Park, Seon Yeong
    Park, Sewon
    Lim, Hyeong Yong
    Yoon, Moonsu
    Choi, Jeong-Hee
    Kwak, Sang Kyu
    Hong, Sung You
    Choi, Nam-Soon
    ADVANCED SCIENCE, 2023, 10 (05)
  • [42] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Li, Shiyou
    Fu, Xiaolan
    Liang, Youwei
    Xie, Jing
    Wei, Yuan
    Yang, Li
    Han, Yamin
    Li, Wenbo
    Cui, Xiaoling
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (07) : 5376 - 5384
  • [43] Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries
    Nurpeissova, Arailym
    Park, Dai-In
    Kim, Sung-Soo
    Sun, Yang-Kook
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : A171 - A177
  • [44] Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries
    Park, Hyunjung
    Song, Taeseup
    Tripathi, Rajesh
    Nazar, Linda F.
    Paik, Ungyu
    IONICS, 2014, 20 (10) : 1351 - 1359
  • [45] A CeO2-modified Li-rich layered oxide cathode with tunable interfacial oxygen for durable Li-ion batteries
    Wang, Baolu
    Lu, Li
    Hu, Yanjie
    Chen, Ling
    Jiang, Hao
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (05) : 2173 - 2176
  • [46] Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries
    Shi, Ji-Lei
    Xiao, Dong-Dong
    Zhang, Xu-Dong
    Yin, Ya-Xia
    Guo, Yu-Guo
    Gu, Lin
    Wan, Li-Jun
    NANO RESEARCH, 2017, 10 (12) : 4201 - 4209
  • [47] Chemical lithiation methodology enabled Prussian blue as a Li-rich cathode material for secondary Li-ion batteries
    Wu, Chen
    Hu, Jieming
    Chen, Hanxian
    Zhang, Chengyi
    Xu, Mingli
    Zhuang, Lin
    Ai, Xinping
    Qian, Jiangfeng
    ENERGY STORAGE MATERIALS, 2023, 60
  • [48] High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries
    Redel, Katarzyna
    Kulka, Andrzej
    Plewa, Anna
    Molenda, Janina
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5333 - A5342
  • [49] Perspective on High-Stability Single-Crystal Li-Rich Cathode Materials for Li-Ion Batteries
    Zhao, Xiaowen
    Cao, Xin
    Sheng, Chuanchao
    Xu, Lin
    Wu, Ping
    Zhou, Yiming
    He, Ping
    Tang, Yawen
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (19) : 24147 - 24161
  • [50] Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries
    Yu, Fu-Da
    Que, Lan-Fang
    Xu, Cheng-Yan
    Wang, Min-Jun
    Sun, Gang
    Duh, Jenq-Gong
    Wang, Zhen-Bo
    NANO ENERGY, 2019, 59 : 527 - 536