A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries

被引:6
作者
Nazarov, Eugene E. [1 ]
Dembitskiy, Artem D. [1 ]
Trussov, Ivan A. [1 ]
Tyablikov, Oleg A. [1 ]
Glazkova, Iana S. [2 ]
Alexey, Sobolev V. [2 ]
Presniakov, Igor A. [2 ]
Morozov, Anatolii V. [1 ,2 ]
Mikheev, Ivan V. [2 ]
Nikitina, Victoria A. [1 ]
Abakumov, Artem M. [1 ]
Antipov, Evgeny V. [1 ,2 ]
Fedotov, Stanislav S. [1 ]
机构
[1] Skoltech Ctr Energy Sci & Technol, Skolkovo Inst Sci & Technol, Bolshoi Blvd 30 bld 1, Moscow 121205, Russia
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
来源
ENERGY ADVANCES | 2023年 / 2卷 / 02期
关键词
DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL PERFORMANCE; DIFFUSION-COEFFICIENT; HIGH-RESOLUTION; IN-SITU; LITHIUM; ELECTRODE; DEFECTS; LIFE0.5MN0.5PO4; INTERCALATION;
D O I
10.1039/d2ya00292b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triphylite-structured lithium iron/manganese phosphates have captured rapt attention as prospective positive electrodes for Li-ion batteries, targeted to automotive applications. Here we report on a strategy to improve the power characteristics of Mn-doped LiFePO4 cathode materials by introducing extra Li at the transition metal site (Li-rich) via a facile solvothermal synthesis route. The crystal structure refinement based on joint synchrotron and neutron powder diffraction data unambiguously confirmed the formation of a Li-rich phase, with additional validation coming from scanning transmission electron microscopy, electron energy loss spectroscopy, and 57Fe Mossbauer spectroscopy. The particularly created defect structure of the Li-rich Li1+delta(Fe0.5Mn0.5)1-delta PO4 with additional Li+ ions residing at the 3d-metal site enables the extended solid solution region of the Li ion de/intercalation mechanism established using operando synchrotron X-ray powder diffraction. The suggested strategy offers an advanced electrochemical behavior of the materials that exhibit specific capacities of over 158 mAh g-1 at C/10 and 120 mAh g-1 at 10C, with retention of 84 +/- 4% after 500 cycles at 10C. Introduction of additional Li ions into the LiFe0.5Mn0.5PO4 crystal structure results in an extended solid solution region of the Li+ de/intercalation process.
引用
收藏
页码:328 / 337
页数:10
相关论文
共 50 条
  • [31] Retardation of Structure Densification by Increasing Covalency in Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries
    Savina, Aleksandra A.
    V. Morozov, Anatolii
    Moiseev, Ivan A.
    Boev, Anton O.
    Aksyonov, Dmitry A.
    Zhang, Leiting
    Morozova, Polina A.
    Nikitina, Victoria A.
    Pazhetnov, Egor M.
    Berg, Erik J.
    Fedotov, Stanislav S.
    Tarascon, Jean-Marie
    V. Antipov, Evgeny
    Abakumov, Artem M.
    CHEMISTRY OF MATERIALS, 2022, 34 (15) : 6779 - 6791
  • [32] An artificially tailored functional layer on Li-rich layer cathodes enables a stable high-temperature interphase for Li-ion batteries
    Yang, Yaru
    Sun, Gang
    Zhu, Qingjun
    Jiang, Yunshan
    Ke, Wang
    Wang, Panpan
    Zhao, Yang
    Zhang, Wang
    Wang, Zhenbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (45) : 24018 - 24029
  • [33] Direct Observation of Li-Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li-rich Cathodes of Solid-State Batteries
    Liu, Bowen
    Hu, Naifang
    Li, Chao
    Ma, Jun
    Zhang, Jianwei
    Yang, Yuan
    Sun, Deye
    Yin, Bangxun
    Cui, Guanglei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (40)
  • [34] Li-rich layer-structured cathode materials for high energy Li-ion batteries
    Li, Liu
    Lee, Kim Seng
    Lu, Li
    FUNCTIONAL MATERIALS LETTERS, 2014, 7 (04)
  • [35] Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries
    Xie, Y.
    Saubanere, M.
    Doublet, M. -L.
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (01) : 266 - 274
  • [36] Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn
    Li, Xiaotong
    Kim, Seong Shik
    Qian, Michelle D.
    Patheria, Eshaan S.
    Andrews, Jessica L.
    Morrell, Colin T.
    Melot, Brent C.
    See, Kimberly A.
    CHEMISTRY OF MATERIALS, 2024, 36 (11) : 5687 - 5697
  • [37] Cycling-Driven Electrochemical Activation of Li-Rich NMC Positive Electrodes for Li-Ion Batteries
    Luchkin, Sergey Yu.
    Kirsanova, Maria A.
    Aksyonov, Dmitry A.
    Lipovskikh, Svetlana A.
    Nikitina, Victoria A.
    Abakumov, Artem M.
    Stevenson, Keith J.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06): : 7758 - 7769
  • [38] Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries
    Silvestri, Laura
    Celeste, Arcangelo
    Tuccillo, Mariarosaria
    Brutti, Sergio
    CRYSTALS, 2023, 13 (02)
  • [39] Stabilizing Li-Rich Layered Cathode Materials Using a LiCoMnO4 Spinel Nanolayer for Li-Ion Batteries
    Lin, Hsiu-Fen
    Cheng, Si-Ting
    Chen, De-Zhen
    Wu, Nian-Ying
    Jiang, Zong-Xiao
    Chang, Chun-Ting
    NANOMATERIALS, 2022, 12 (19)
  • [40] Li-Rich Layered/Spinel Heterostructured Special Morphology Cathode Material with High Rate Capability for Li-Ion Batteries
    Yi, Lanhua
    Liu, Zhongshu
    Yu, Ruizhi
    Zhao, Caixian
    Peng, Hongfeng
    Liu, Meihong
    Wu, Bing
    Chen, Manfang
    Wang, Xianyou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 11005 - 11015