Generative adversarial network augmentation for solving the training data imbalance problem in crop classification

被引:5
作者
Shumilo, Leonid [1 ]
Okhrimenko, Anton [2 ]
Kussul, Nataliia [2 ,3 ,4 ]
Drozd, Sofiia [2 ]
Shkalikov, Oleh [2 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Modelling & Data Anal, Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Space Res Inst, Dept Space Informat Technol & Syst, Kiev, Ukraine
[4] State Space Agcy Ukraine, Kiev, Ukraine
基金
新加坡国家研究基金会;
关键词
Crop Classification; Generative Adversarial Networks; Training Data Generation; Data Set Imbalance; U-Net;
D O I
10.1080/2150704X.2023.2275551
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Deep learning models offer great potential for advancing land monitoring using satellite data. However, they face challenges due to imbalanced real-world data distributions of land cover and crop types, hindering scalability and transferability. This letter presents a novel data augmentation method employing Generative Adversarial Neural Networks (GANs) with pixel-to-pixel transformation (pix2pix). This approach generates realistic synthetic satellite images with artificial ground truth masks, even for rare crop class distributions. It enables the creation of additional minority class samples, enhancing control over training data balance and outperforming traditional augmentation methods. Implementing this method improved the overall map accuracy (OA) and intersection over union (IoU) by 1.5% and 2.1%, while average crop type classes' user accuracy (UA) and producer accuracies (PA), as well as IoU, were improved by 11.2%, 6.4% and 10.2%.
引用
收藏
页码:1131 / 1140
页数:10
相关论文
共 19 条
  • [1] GAN Generation of Synthetic Multispectral Satellite Images
    Abady, L.
    Barni, M.
    Garzelli, A.
    Tondi, B.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [2] Synthesis of Satellite-Like Urban Images From Historical Maps Using Conditional GAN
    Andrade, Henrique J. A.
    Fernandes, Bruno J. T.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
    Boryan, Claire
    Yang, Zhengwei
    Mueller, Rick
    Craig, Mike
    [J]. GEOCARTO INTERNATIONAL, 2011, 26 (05) : 341 - 358
  • [4] Bowles C, 2018, Arxiv, DOI arXiv:1810.10863
  • [5] Pix2pix Conditional Generative Adversarial Network with MLP Loss Function for Cloud Removal in a Cropland Time Series
    Christovam, Luiz E.
    Shimabukuro, Milton H.
    Galo, Maria de Lourdes B. T.
    Honkavaara, Eija
    [J]. REMOTE SENSING, 2022, 14 (01)
  • [6] Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world
    Defourny, Pierre
    Bontemps, Sophie
    Bellemans, Nicolas
    Cara, Cosmin
    Dedieu, Gerard
    Guzzonato, Eric
    Hagolle, Olivier
    Inglada, Jordi
    Nicola, Laurentiu
    Rabaute, Thierry
    Savinaud, Mickael
    Udroiu, Cosmin
    Valero, Silvia
    Begue, Agnes
    Dejoux, Jean-Francois
    El Harti, Abderrazak
    Ezzahar, Jamal
    Kussul, Nataliia
    Labbassi, Kamal
    Lebourgeois, Valentine
    Miao, Zhang
    Newby, Terrence
    Nyamugama, Adolph
    Salh, Norakhan
    Shelestov, Andrii
    Simonneaux, Vincent
    Traore, Pierre Sibiry
    Traore, Souleymane S.
    Koetz, Benjamin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 551 - 568
  • [7] The ARYA crop yield forecasting algorithm: Application to the main wheat exporting countries
    Franch, B.
    Vermote, E.
    Skakun, S.
    Santamaria-Artigas, A.
    Kalecinski, N.
    Roger, J-C
    Becker-Reshef, I
    Barker, B.
    Justice, C.
    Sobrino, J. A.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [8] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [9] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [10] SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT
    Kussul, N.
    Shelestov, A.
    Yailymova, H.
    Yailymov, B.
    Lavreniuk, M.
    Ilyashenko, M.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1050 - 1053