Generative adversarial network augmentation for solving the training data imbalance problem in crop classification

被引:9
作者
Shumilo, Leonid [1 ]
Okhrimenko, Anton [2 ]
Kussul, Nataliia [2 ,3 ,4 ]
Drozd, Sofiia [2 ]
Shkalikov, Oleh [2 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Modelling & Data Anal, Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Space Res Inst, Dept Space Informat Technol & Syst, Kiev, Ukraine
[4] State Space Agcy Ukraine, Kiev, Ukraine
基金
新加坡国家研究基金会;
关键词
Crop Classification; Generative Adversarial Networks; Training Data Generation; Data Set Imbalance; U-Net;
D O I
10.1080/2150704X.2023.2275551
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Deep learning models offer great potential for advancing land monitoring using satellite data. However, they face challenges due to imbalanced real-world data distributions of land cover and crop types, hindering scalability and transferability. This letter presents a novel data augmentation method employing Generative Adversarial Neural Networks (GANs) with pixel-to-pixel transformation (pix2pix). This approach generates realistic synthetic satellite images with artificial ground truth masks, even for rare crop class distributions. It enables the creation of additional minority class samples, enhancing control over training data balance and outperforming traditional augmentation methods. Implementing this method improved the overall map accuracy (OA) and intersection over union (IoU) by 1.5% and 2.1%, while average crop type classes' user accuracy (UA) and producer accuracies (PA), as well as IoU, were improved by 11.2%, 6.4% and 10.2%.
引用
收藏
页码:1131 / 1140
页数:10
相关论文
共 19 条
[1]   GAN Generation of Synthetic Multispectral Satellite Images [J].
Abady, L. ;
Barni, M. ;
Garzelli, A. ;
Tondi, B. .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
[2]   Synthesis of Satellite-Like Urban Images From Historical Maps Using Conditional GAN [J].
Andrade, Henrique J. A. ;
Fernandes, Bruno J. T. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[3]   Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program [J].
Boryan, Claire ;
Yang, Zhengwei ;
Mueller, Rick ;
Craig, Mike .
GEOCARTO INTERNATIONAL, 2011, 26 (05) :341-358
[4]  
Bowles C, 2018, Arxiv, DOI arXiv:1810.10863
[5]   Pix2pix Conditional Generative Adversarial Network with MLP Loss Function for Cloud Removal in a Cropland Time Series [J].
Christovam, Luiz E. ;
Shimabukuro, Milton H. ;
Galo, Maria de Lourdes B. T. ;
Honkavaara, Eija .
REMOTE SENSING, 2022, 14 (01)
[6]   Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world [J].
Defourny, Pierre ;
Bontemps, Sophie ;
Bellemans, Nicolas ;
Cara, Cosmin ;
Dedieu, Gerard ;
Guzzonato, Eric ;
Hagolle, Olivier ;
Inglada, Jordi ;
Nicola, Laurentiu ;
Rabaute, Thierry ;
Savinaud, Mickael ;
Udroiu, Cosmin ;
Valero, Silvia ;
Begue, Agnes ;
Dejoux, Jean-Francois ;
El Harti, Abderrazak ;
Ezzahar, Jamal ;
Kussul, Nataliia ;
Labbassi, Kamal ;
Lebourgeois, Valentine ;
Miao, Zhang ;
Newby, Terrence ;
Nyamugama, Adolph ;
Salh, Norakhan ;
Shelestov, Andrii ;
Simonneaux, Vincent ;
Traore, Pierre Sibiry ;
Traore, Souleymane S. ;
Koetz, Benjamin .
REMOTE SENSING OF ENVIRONMENT, 2019, 221 :551-568
[7]   The ARYA crop yield forecasting algorithm: Application to the main wheat exporting countries [J].
Franch, B. ;
Vermote, E. ;
Skakun, S. ;
Santamaria-Artigas, A. ;
Kalecinski, N. ;
Roger, J-C ;
Becker-Reshef, I ;
Barker, B. ;
Justice, C. ;
Sobrino, J. A. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
[8]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[9]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[10]   SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT [J].
Kussul, N. ;
Shelestov, A. ;
Yailymova, H. ;
Yailymov, B. ;
Lavreniuk, M. ;
Ilyashenko, M. .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :1050-1053