Experimental and Computational Fluid Dynamic-CFD Analysis Simulation of Heat Transfer Using Graphene Nanoplatelets GNP/Water in the Double Tube Heat Exchanger

被引:4
|
作者
Lima, Carlos C. X. S. [1 ]
Ochoa, Alvaro A. V. [1 ,2 ]
da Costa, Jose A. P. [1 ,2 ]
de Menezes, Frederico D. [1 ,2 ]
Alves, Joao V. P. [2 ]
Ferreira, Julia M. G. A. [2 ]
Azevedo, Clara C. A. [1 ]
Michima, Paula S. A. [1 ]
Leite, Gustavo N. P. [1 ,2 ]
机构
[1] Univ Fed Pernambuco, Dept Mech Engn, Cidade Univ,1235, BR-50670901 Recife, Brazil
[2] Fed Inst Educ Sci & Technol Pernambuco, Dept Higher Educ Courses DACS, Av Prof Luiz Freire,500, BR-50740545 Recife, Brazil
关键词
double tube heat exchangers; heat transfer; nanofluids; graphene; NANOFLUID FLOW; PRESSURE-DROP; TRANSFER PERFORMANCE; TRANSFER ENHANCEMENT; FRICTION FACTOR; HYDRAULIC CHARACTERISTICS; WATER NANOFLUIDS; HYBRID NANOFLUID; MASS-TRANSFER; TAPE INSERTS;
D O I
10.3390/pr11092735
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study investigates and compares the experimental heat transfer performance and simulation via computational fluid dynamics (CFD) of graphene nanoplatelets (GNP) and water nanofluids GNP/water in the double-tube-type heat exchanger (DTHE). Tests were conducted with water/water and GNP/water fluids, with the nanofluid for the hot-fluid circuit and water for the cold-fluid circuit, with counterflow direction, varying the nanofluid concentrations by weight (wt%) at 0.0125%, 0.025%, and 0.050%, the operating temperature at 50 and 60 & DEG;C, and Reynolds numbers between 2000-6000. The results showed that 0.025 wt% GNP presented better thermal performance, with a 28% increase in the temperature gain. The 0.025 wt% GNP had slightly better performance for the Nusselt number (Nu), and the 0.05 wt% GNP had a slightly better thermal effectiveness. The comparison between the experimental values showed good agreement with those calculated by empirical correlations and the CFD model, with maximum and minimum relative error values of 9% and 1%, respectively, when the Petukhov equation was used.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Experimental study of Cu-water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger
    El-Maghlany, Wael M.
    Hanafy, Ahmed A.
    Hassan, Amr A.
    El-Magid, Mohamed A.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 78 : 100 - 111
  • [32] Experimental Investigate of Heat Transfer for Graphene/Water Nanofluid in Micro Heat Exchanger
    AbdElhafez, S. E.
    Abo-Zahhad, E. M.
    El-Shazly, A. H.
    El-Kady, M. F.
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES16), 2017, 1814
  • [33] Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger
    Sheikholeslami, M.
    Gorji-Bandpy, M.
    Ganji, D. D.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 12
  • [34] Experimental investigation of heat transfer enhancement and fluid flow characteristics in a protruded surface heat exchanger tube
    Kumar, Prashant
    Kumar, Alok
    Chamoli, Sunil
    Kumar, Manoj
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 71 : 42 - 51
  • [35] Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger
    M. Sheikholeslami
    M. Gorji-Bandpy
    D. D. Ganji
    The European Physical Journal Plus, 130
  • [36] Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: Numerical simulation and sensitivity analysis of turbulent fluid flow
    Shirvan, Kamel Milani
    Ellahi, Rahmat
    Mirzakhanlari, Soroush
    Mamourian, Mojtaba
    APPLIED THERMAL ENGINEERING, 2016, 109 : 761 - 774
  • [37] Numerical simulation and sensitivity analysis of heat transfer enhancement in a flat heat exchanger tube with discrete inclined ribs
    Zheng, Nianben
    Liu, Peng
    Liu, Zhichun
    Liu, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 : 509 - 520
  • [38] Enhancement of heat transfer in shell and tube heat exchanger using mini-channels and nanofluids: An experimental study
    Yilmaz, Mehmet Senan
    Unverdi, Murat
    Kucuk, Hasan
    Akcakale, Nurettin
    Halici, Fethi
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 179
  • [39] Property of water-nanoparticle flow and heat transfer in the double-tube heat exchanger with nanofluid
    Shi, Ruifang
    Lin, Wenqian
    Lin, Jianzhong
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023,
  • [40] Effect of Wire Pitch on Capacity of Single Staggered Wire and Tube Heat Exchanger Using Computational Fluid Dynamic Simulation
    Akbar, F. R.
    Arsana, I. M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (08): : 1637 - 1642