Experimental and Computational Fluid Dynamic-CFD Analysis Simulation of Heat Transfer Using Graphene Nanoplatelets GNP/Water in the Double Tube Heat Exchanger

被引:4
|
作者
Lima, Carlos C. X. S. [1 ]
Ochoa, Alvaro A. V. [1 ,2 ]
da Costa, Jose A. P. [1 ,2 ]
de Menezes, Frederico D. [1 ,2 ]
Alves, Joao V. P. [2 ]
Ferreira, Julia M. G. A. [2 ]
Azevedo, Clara C. A. [1 ]
Michima, Paula S. A. [1 ]
Leite, Gustavo N. P. [1 ,2 ]
机构
[1] Univ Fed Pernambuco, Dept Mech Engn, Cidade Univ,1235, BR-50670901 Recife, Brazil
[2] Fed Inst Educ Sci & Technol Pernambuco, Dept Higher Educ Courses DACS, Av Prof Luiz Freire,500, BR-50740545 Recife, Brazil
关键词
double tube heat exchangers; heat transfer; nanofluids; graphene; NANOFLUID FLOW; PRESSURE-DROP; TRANSFER PERFORMANCE; TRANSFER ENHANCEMENT; FRICTION FACTOR; HYDRAULIC CHARACTERISTICS; WATER NANOFLUIDS; HYBRID NANOFLUID; MASS-TRANSFER; TAPE INSERTS;
D O I
10.3390/pr11092735
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study investigates and compares the experimental heat transfer performance and simulation via computational fluid dynamics (CFD) of graphene nanoplatelets (GNP) and water nanofluids GNP/water in the double-tube-type heat exchanger (DTHE). Tests were conducted with water/water and GNP/water fluids, with the nanofluid for the hot-fluid circuit and water for the cold-fluid circuit, with counterflow direction, varying the nanofluid concentrations by weight (wt%) at 0.0125%, 0.025%, and 0.050%, the operating temperature at 50 and 60 & DEG;C, and Reynolds numbers between 2000-6000. The results showed that 0.025 wt% GNP presented better thermal performance, with a 28% increase in the temperature gain. The 0.025 wt% GNP had slightly better performance for the Nusselt number (Nu), and the 0.05 wt% GNP had a slightly better thermal effectiveness. The comparison between the experimental values showed good agreement with those calculated by empirical correlations and the CFD model, with maximum and minimum relative error values of 9% and 1%, respectively, when the Petukhov equation was used.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Prediction of heat transfer coefficient and friction factor of mini channel shell and tube heat exchanger using numerical analysis and experimental validation
    Unverdi, Murat
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 171
  • [22] Numerical and experimental investigation of heat transfer enhancement in double tube heat exchanger using nail rod inserts
    Marzouk, S. A.
    Almehmadi, Fahad Awjah
    Aljabr, Ahmad
    Sharaf, Maisa A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Computational Fluid Dynamics and Heat Transfer Analysis for a Novel Heat Exchanger
    Ma, Haolin
    Oztekin, Dennis E.
    Bayraktar, Seyfettin
    Yayla, Sedat
    Oztekin, Alparslan
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2015, 137 (05):
  • [24] Heat transfer analysis of double tube heat exchanger with helical inserts
    Padmanabhan, S.
    Reddy, Obulareddy Yuvatejeswar
    Yadav, Kanta Venkata Ajith Kumar
    Raja, V. K. Bupesh
    Palanikumar, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 3588 - 3595
  • [25] The effect of circular hole spring tape on the turbulent heat transfer and entropy analysis in a heat exchanger tube: an experimental study
    Bhattacharyya, Suvanjan
    Raghavendran, Hari B.
    Paul, Akshoy Ranjan
    EXPERIMENTAL HEAT TRANSFER, 2021, 34 (06) : 493 - 512
  • [26] An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al2O3/water nanofluid
    Attalla, M.
    Maghrabie, Hussein M.
    EXPERIMENTAL HEAT TRANSFER, 2020, 33 (03) : 261 - 281
  • [27] Heat transfer analysis of shell and tube heat exchanger cooled using nanofluids
    Kareemullah M.
    Chethan K.M.
    Fouzan M.K.
    Darshan B.V.
    Kaladgi A.R.
    Prashanth M.B.H.
    Muneer R.
    Yashawantha K.M.
    Recent Patents on Mechanical Engineering, 2019, 12 (04): : 350 - 356
  • [28] Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study
    Khedkar, Rohit S.
    Sonawane, Shriram S.
    Wasewar, Kailas L.
    CHEMICAL, CIVIL AND MECHANICAL ENGINEERING TRACKS OF 3RD NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE2012), 2013, 51 : 318 - 323
  • [29] Experimental Investigation of Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using SnO2-Water and Ag-Water Nanofluids
    Sridhar, S. V.
    Karuppasamy, R.
    Sivakumar, G. D.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2020, 12 (04)