New angles on fast calorimeter shower simulation

被引:16
作者
Diefenbacher, Sascha [1 ]
Eren, Engin [2 ]
Gaede, Frank [2 ,3 ]
Kasieczka, Gregor [1 ,3 ]
Korol, Anatolii [2 ]
Krueger, Katja [2 ]
Mckeown, Peter [2 ]
Rustige, Lennart [2 ,3 ]
机构
[1] Univ Hamburg, Inst Experimentalphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Deutsch Elekt Synchrotron DESY, Notke Str 85, D-22607 Hamburg, Germany
[3] Deutsch Elekt Synchrotron DESY, Ctr Data & Comp Nat Sci CDCS, Notke Str 85, D-22607 Hamburg, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 03期
关键词
simulations; calorimeter; generative models; reconstruction; deep learning; particle physics;
D O I
10.1088/2632-2153/acefa9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.
引用
收藏
页数:17
相关论文
共 40 条
  • [1] AtlFast3: The Next Generation of Fast Simulation in ATLAS
    Aad G.
    Abbott B.
    Abbott D.C.
    Abud A.A.
    Abeling K.
    Abhayasinghe D.K.
    Abidi S.H.
    Aboulhorma A.
    Abramowicz H.
    Abreu H.
    Abulaiti Y.
    Hoffman A.C.A.
    Acharya B.S.
    Achkar B.
    Adam L.
    Bourdarios C.A.
    Adamczyk L.
    Adamek L.
    Addepalli S.V.
    Adelman J.
    Adiguzel A.
    Adorni S.
    Adye T.
    Affolder A.A.
    Afik Y.
    Agapopoulou C.
    Agaras M.N.
    Agarwala J.
    Aggarwal A.
    Agheorghiesei C.
    Aguilar-Saavedra J.A.
    Ahmad A.
    Ahmadov F.
    Ahmed W.S.
    Ai X.
    Aielli G.
    Aizenberg I.
    Akatsuka S.
    Akbiyik M.
    Åkesson T.P.A.
    Akimov A.V.
    Khoury K.A.
    Alberghi G.L.
    Albert J.
    Albicocco P.
    Verzini M.J.A.
    Alderweireldt S.
    Aleksa M.
    Aleksandrov I.N.
    Alexa C.
    [J]. Computing and Software for Big Science, 2022, 6 (1)
  • [2] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [3] Albrecht J., 2019, COMPUT SOFTWARE BIG, V3, P7, DOI [10.1007/s41781-018-0018-8, DOI 10.1007/S41781-018-0018-8]
  • [4] Aryshev A., ARXIV
  • [5] Bacchetta N, 2019, Arxiv, DOI arXiv:1911.12230
  • [6] Bernardi G, 2022, Arxiv, DOI arXiv:2203.06520
  • [7] Bingham E, 2019, J MACH LEARN RES, V20
  • [8] Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
    Buhmann E.
    Diefenbacher S.
    Eren E.
    Gaede F.
    Kasieczka G.
    Korol A.
    Krüger K.
    [J]. Computing and Software for Big Science, 2021, 5 (1)
  • [9] Buhmann E, 2023, Arxiv, DOI arXiv:2301.08128
  • [10] Hadrons, better, faster, stronger
    Buhmann, Erik
    Diefenbacher, Sascha
    Hundhausen, Daniel
    Kasieczka, Gregor
    Korcari, William
    Eren, Engin
    Gaede, Frank
    Krueger, Katja
    McKeown, Peter
    Rustige, Lennart
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (02):