A multi-tiered spare parts inventory forecasting system

被引:0
作者
Xie, Zhuoqing [1 ]
Xie, Hongzhi [2 ]
Liu, Shuhui [2 ]
Huang, Yijing [1 ]
Deng, Xiaolin [2 ]
Liu, Biwei [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060, Peoples R China
[2] China Nucl Power Operat Co Ltd, Spare Parts Ctr, Shenzhen 516545, Peoples R China
关键词
inventory forecasting; spare parts forecasting; deep learning; quantitative techniques; multi-layer; INTERMITTENT DEMAND;
D O I
10.1504/IJSSC.2023.133248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To achieve intelligent nuclear power management, we propose a multilevel nuclear power spare parts prediction method. We combine qualitative prediction methods with various cutting-edge quantitative prediction methods to forecast the overall inventory of nuclear power spare parts and individual categories, enabling enterprises to minimise costs and prevent stockouts. Specifically, we classified the spare parts according to their usage characteristics and developed a hybrid model that integrates the CNN+BiLSTM and DLinear models (Zeng et al., 2022), taking into account expert opinions for each category. Experimental results show a significant improvement in accuracy compared to traditional methods.
引用
收藏
页码:165 / 172
页数:9
相关论文
共 13 条
  • [1] Ashik A.M., 2019, TIME SERIES MODEL ST, P221
  • [2] Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence
    Babai, Mohamed Zied
    Syntetos, Aris
    Teunter, Ruud
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2014, 157 : 212 - 219
  • [3] Jung W-h., 2018, J KOREAN I INFORM SC, V36, P21
  • [4] A Multi-level Artificial Neural Network for Gasoline Demand Forecasting of Iran
    Kazemi, A.
    Shakouri G, H.
    Mehregan, M. R.
    Taghizadeh, M. R.
    Menhaj, M. B.
    Foroughi.A, A.
    [J]. SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 61 - +
  • [5] Kim Taegyu, 2018, [Journal of the Aviation Management Society of Korea, 한국항공경영학회지], V16, P155, DOI 10.30529/amsok.2018.16.4.008
  • [6] Kozik P., 2012, MANAG PROD ENG REV
  • [7] A CNN-BiLSTM-AM method for stock price prediction
    Lu, Wenjie
    Li, Jiazheng
    Wang, Jingyang
    Qin, Lele
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 4741 - 4753
  • [8] Oh B., 2017, THESIS KOREA U INFOR, P2
  • [9] Palmer Phillip B, 2009, Cardiopulm Phys Ther J, V20, P23
  • [10] A hybrid spares demand forecasting method dedicated to mining industry
    Rosienkiewicz, Maria
    Chlebus, Edward
    Detyna, Jerzy
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 49 : 87 - 107