Optical soliton solutions and dynamic behavior analysis of generalized nonlinear fractional Tzitzeica-type equation

被引:2
作者
Zhang, Kun [1 ]
Li, Zhao [1 ]
机构
[1] Chengdu Univ, Coll Comp Sci, Chengdu 610106, Peoples R China
关键词
Fractional derivative; Planar dynamic system; Bifurcation; Optical soliton solution; PARTIAL-DIFFERENTIAL-EQUATIONS; WAVE SOLUTIONS; FIBERS;
D O I
10.1016/j.rinp.2023.106815
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The application of fractional partial differential equations in the area of nonlinear optics has greatly facilitated the development of optical fiber communication. The primary objective of this article is to analyze the dynamic behavior of generalized nonlinear fractional Tzitzeica-type equation and obtain its optical soliton solutions. Using the planar dynamic system, phase portraits of the system are studied from a qualitative perspective, and then the polynomial complete discrimination method is utilized to obtain various optical soliton solutions of the equation. Furthermore, the relevant characteristics are examined through digital simulation and image analysis.
引用
收藏
页数:8
相关论文
共 32 条
[1]   The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations [J].
Abdulla-Al-Mamun ;
Ananna, Samsun Nahar ;
Gharami, Partha Protim ;
An, Tianqing ;
Asaduzzaman, Md. .
RESULTS IN PHYSICS, 2022, 41
[2]   A Generalized Definition of the Fractional Derivative with Applications [J].
Abu-Shady, M. ;
Kaabar, Mohammed K. A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[3]  
Alam L. M. B., 2021, Part. Differ. Equ. Appl. Math, V4, P100039
[4]   Observation on different dynamics of breaking soliton equation by bifurcation analysis and multistability theory [J].
Almusawa, Hassan ;
Jhangeer, Adil ;
Hussain, Zamir .
RESULTS IN PHYSICS, 2022, 36
[5]   Optical solitons in birefringent fibers with spatio-temporal dispersion [J].
Bhrawy, A. H. ;
Alshaery, A. A. ;
Hilal, E. M. ;
Savescu, Michelle ;
Milovic, Daniela ;
Khan, Kaisar R. ;
Mahmood, Mohammad F. ;
Jovanoski, Zlatko ;
Biswas, Anjan .
OPTIK, 2014, 125 (17) :4935-4944
[6]   Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method [J].
Biswas, Swapan ;
Ghosh, Uttam ;
Raut, Santanu .
CHAOS SOLITONS & FRACTALS, 2023, 172
[7]   Solitary waves in a quartic nonlinear elastic rod [J].
Duan, WS ;
Zhao, JB .
CHAOS SOLITONS & FRACTALS, 2000, 11 (08) :1265-1267
[8]  
Farhood Adnan K, 2023, Partial Differ Equ Appl Math, V7
[9]   Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method [J].
Fendzi-Donfack, Emmanuel ;
Kumar, Dipankar ;
Tala-Tebue, Eric ;
Nana, Laurent ;
Nguenang, Jean Pierre ;
Kenfack-Jiotsa, Aurelien .
RESULTS IN PHYSICS, 2022, 32
[10]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144