White dwarf binary modulation can help stochastic gravitational wave background search

被引:7
|
作者
Lin, Shijie [1 ,2 ]
Hu, Bin [1 ,2 ]
Zhang, Xue-Hao [3 ,4 ,5 ]
Liu, Yu-Xiao [3 ,4 ,5 ]
机构
[1] Beijing Normal Univ, Inst Frontier Astron & Astrophys, Beijing 102206, Peoples R China
[2] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[3] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Sch Phys Sci & Technol, Key Lab Theoret Phys Gansu Prov, Lanzhou 730000, Peoples R China
[4] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
[5] Lanzhou Univ, Res Ctr Gravitat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
gravitational waves; white dwarf binary; stochastic gravitational wave background; LISA; POPULATION; NOISE;
D O I
10.1007/s11433-023-2142-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the stochastic gravitational wave backgrounds (SGWBs) search centred at the milli-Hz band, the galactic foreground produced by white dwarf binaries (WDBs) within the Milky Way contaminates the extra-galactic signal severely. Because of the anisotropic distribution pattern of the WDBs and the motion of the space-borne gravitational wave interferometer constellation, the time-domain data stream will show an annual modulation. This property is fundamentally different from those of the SGWBs. In this article, we propose a new filtering method for the data vector based on the annual modulation phenomenon. We apply the resulted inverse variance filter to the LISA Data Challenge. The result shows that for the weaker SGWB signal, such as energy density & omega;(astro) = 1 x 10(-12), the filtering method can enhance the posterior distribution peak prominently. For the stronger signal, such as & omega;(astro) = 3 x 10(-12), the method can improve the Bayesian evidence from "substantial" to "strong" against null hypotheses. This method is model-independent and self-contained. It does not ask for other types of information besides the gravitational wave data.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [42] Search for an emission line of a gravitational wave background
    Nishizawa, Atsushi
    Seto, Naoki
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [43] The gravitational wave emission of double white dwarf coalescences
    Zou, Ze-Cheng
    Zhou, Xiao-Long
    Huang, Yong-Feng
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2020, 20 (09)
  • [44] The gravitational wave emission of double white dwarf coalescences
    邹泽城
    周小龙
    黄永锋
    Research in Astronomy and Astrophysics, 2020, 20 (09) : 32 - 38
  • [45] Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA
    Chen, Zu-Cheng
    Huang, Fan
    Huang, Qing-Guo
    ASTROPHYSICAL JOURNAL, 2019, 871 (01):
  • [46] What can we learn from the stochastic gravitational wave background produced by oscillons?
    Antusch, Stefan
    Cefala, Francesco
    Orani, Stefano
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03):
  • [47] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [48] Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background
    Dvorkin, Irina
    Vangioni, Elisabeth
    Silk, Joseph
    Uzan, Jean-Philippe
    Olive, Keith A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3877 - 3885
  • [49] Search for a stochastic gravitational-wave background using a pair of torsion-bar antennas
    Shoda, Ayaka
    Ando, Masaki
    Ishidoshiro, Koji
    Okada, Kenshi
    Kokuyama, Wataru
    Aso, Yoichi
    Tsubono, Kimio
    PHYSICAL REVIEW D, 2014, 89 (02):
  • [50] The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background
    Arzoumanian, Zaven
    Baker, Paul T.
    Blumer, Harsha
    Becsy, Bence
    Brazier, Adam
    Brook, Paul R.
    Burke-Spolaor, Sarah
    Chatterjee, Shami
    Chen, Siyuan
    Cordes, James M.
    Cornish, Neil J.
    Crawford, Fronefield
    Cromartie, H. Thankful
    DeCesar, Megan E.
    Demorest, Paul B.
    Dolch, Timothy
    Ellis, Justin A.
    Ferrara, Elizabeth C.
    Fiore, William
    Fonseca, Emmanuel
    Garver-Daniels, Nathan
    Gentile, Peter A.
    Good, Deborah C.
    Hazboun, Jeffrey S.
    Holgado, A. Miguel
    Islo, Kristina
    Jennings, Ross J.
    Jones, Megan L.
    Kaiser, Andrew R.
    Kaplan, David L.
    Kelley, Luke Zoltan
    Key, Joey Shapiro
    Laal, Nima
    Lam, Michael F.
    Lazio, T. Joseph W.
    Lorimer, Duncan R.
    Luo, Jing
    Lynch, Ryan S.
    Madison, Dustin R.
    McLaughlin, Nlaura A.
    Mingarelli, Chiara M. F.
    Ng, Cherry
    Nice, David J.
    Pennucci, Timothy T.
    Pol, Nihan S.
    Ransom, Scott M.
    Ray, Paul S.
    Shapiro-Albert, Brent J.
    Siemens, Xavier
    Simon, Joseph
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 905 (02)