On the Probabilistic Quantum Error Correction

被引:3
作者
Kukulski, Ryszard [1 ]
Pawela, Lukasz [1 ]
Puchala, Zbigniew [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, PL-44100 Gliwice, Poland
关键词
Quantum error correction; postselection; channel-adapted error correction; CODES;
D O I
10.1109/TIT.2023.3254054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic quantum error correction is an error-correcting procedure which uses postselection to determine if the encoded information was successfully restored. In this work, we analyze the probabilistic version of the error-correcting procedure for general noise. We generalize the Knill-Laflamme conditions for probabilistically correctable errors. We show that for some noise channels, the initial information has to be encoded into a mixed state to maximize the probability of successful error correction. Finally, the probabilistic error-correcting procedure offers an advantage over the deterministic procedure. Reducing the probability of successful error correction allows for correcting errors generated by a broader class of noise channels. Significantly, if the errors are caused by a unitary interaction with an auxiliary qubit system, we can probabilistically restore a qubit state by using only one additional physical qubit.
引用
收藏
页码:4620 / 4640
页数:21
相关论文
共 40 条
[1]   Quantum error detection II: Bounds [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :789-800
[2]   Quantum error detection I: Statement of the problem [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :778-788
[3]   Fidelity of a quantum ARQ protocol [J].
Ashikhmin, Alexei .
2006 IEEE Information Theory Workshop, 2006, :42-46
[4]   From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED [J].
Barberis-Blostein, P. ;
Norris, D. G. ;
Orozco, L. A. ;
Carmichael, H. J. .
NEW JOURNAL OF PHYSICS, 2010, 12
[5]   Topological quantum error correction with optimal encoding rate [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2006, 73 (06)
[6]   Correcting quantum errors with entanglement [J].
Brun, Todd ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
SCIENCE, 2006, 314 (5798) :436-439
[7]   Catalytic Quantum Error Correction [J].
Brun, Todd A. ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) :3073-3089
[8]   Random quantum operations [J].
Bruzda, Wojciech ;
Cappellini, Valerio ;
Sommers, Hans-Juergen ;
Zyczkowski, Karol .
PHYSICS LETTERS A, 2009, 373 (03) :320-324
[9]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[10]   A class of quantum LDPC codes: construction and performances under iterative decoding [J].
Camara, Thomas ;
Ollivier, Harold ;
Tillich, Jean-Pierre .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :811-+