A sum-bracket theorem for simple Lie algebras

被引:0
作者
Dona, Daniele [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus Givat Ram, IL-9190401 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Growth in algebras; Lie algebras; Non-associative algebras; Sum-product theorem; Diameter; GROWTH; DIAMETER;
D O I
10.1016/j.jalgebra.2023.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be an algebra over K with a bilinear operation [& BULL;, & BULL;] : g x g -g not necessarily associative. For A C g, let Ak be the set of elements of g written combining k elements of A via + and [& BULL;, & BULL;].We show a "sum-bracket theorem" for simple Lie algebras over K of the form g = sln,son, sp2n, e6, e7, e8, f4, g2: if char(K) is not too small, we have growth of the form |Ak| ? |A|1+& epsilon; for all generating symmetric sets A away from subfields of K. Over Fp in particular, we have a diameter bound matching the best analogous bounds for groups of Lie type [2]. As an independent intermediate result, we prove also an estimate of the form |A n V | < |Ak|dim(V )/ dim(g) for linear affine subspaces V of g. This estimate is valid for all simple algebras, and k is especially small for a large class of them including associative, Lie, and Mal'cev algebras, and Lie superalgebras.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:658 / 694
页数:37
相关论文
共 50 条
  • [41] Symmetry and Representation Theory of Lie Groups and Lie Algebras
    Nakahama, Ryosuke
    [J]. NTT Technical Review, 2024, 22 (09): : 53 - 58
  • [42] Lie identities on enveloping algebras of restricted Lie superalgebras
    Usefi, Hamid
    [J]. JOURNAL OF ALGEBRA, 2013, 393 : 120 - 131
  • [43] Smooth actions of Lie groups and Lie algebras on manifolds
    Morris W. Hirsch
    [J]. Journal of Fixed Point Theory and Applications, 2011, 10 : 219 - 232
  • [44] Smooth actions of Lie groups and Lie algebras on manifolds
    Hirsch, Morris W.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (02) : 219 - 232
  • [45] PBW for an inclusion of Lie algebras
    Calaque, Damien
    Caldararu, Andrei
    Tu, Junwu
    [J]. JOURNAL OF ALGEBRA, 2013, 378 : 64 - 79
  • [46] On triple homomorphisms of Lie algebras
    Jafari, Mohammad Hossein
    Madadi, Ali Reza
    Traustason, Gunnar
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (08)
  • [47] Special Lie algebras for quasicrystals
    Twarock, R
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 : 434 - 437
  • [48] RIGID LIE ALGEBRAS AND ALGEBRAICITY
    Remm, Elisabeth
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (04): : 491 - 510
  • [49] Crossing cubic Lie algebras
    Al-Masarwah, Anas
    Kdaisat, Nadeen
    Abuqamar, Majdoleen
    Alsager, Kholood
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 22112 - 22129
  • [50] A NOTE ON DERIVATIONS OF LIE ALGEBRAS
    Shahryari, M.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) : 444 - 446