A sum-bracket theorem for simple Lie algebras

被引:0
|
作者
Dona, Daniele [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus Givat Ram, IL-9190401 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Growth in algebras; Lie algebras; Non-associative algebras; Sum-product theorem; Diameter; GROWTH; DIAMETER;
D O I
10.1016/j.jalgebra.2023.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be an algebra over K with a bilinear operation [& BULL;, & BULL;] : g x g -g not necessarily associative. For A C g, let Ak be the set of elements of g written combining k elements of A via + and [& BULL;, & BULL;].We show a "sum-bracket theorem" for simple Lie algebras over K of the form g = sln,son, sp2n, e6, e7, e8, f4, g2: if char(K) is not too small, we have growth of the form |Ak| ? |A|1+& epsilon; for all generating symmetric sets A away from subfields of K. Over Fp in particular, we have a diameter bound matching the best analogous bounds for groups of Lie type [2]. As an independent intermediate result, we prove also an estimate of the form |A n V | < |Ak|dim(V )/ dim(g) for linear affine subspaces V of g. This estimate is valid for all simple algebras, and k is especially small for a large class of them including associative, Lie, and Mal'cev algebras, and Lie superalgebras.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:658 / 694
页数:37
相关论文
共 50 条
  • [1] Simple Lie algebras
    Osborn, JM
    Winter, DJ
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5405 - 5420
  • [2] SIMPLE SINGULARITIES AND SIMPLE LIE ALGEBRAS
    Le Dung Trang
    Tosun, Meral
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 2 (01): : 97 - 111
  • [3] Diameters of the Commuting Graphs of Simple Lie Algebras
    Wang, Dengyin
    Xia, Chunguang
    JOURNAL OF LIE THEORY, 2017, 27 (01) : 139 - 154
  • [4] Kurosh theorem for certain Koszul Lie algebras
    Blumer, Simone
    JOURNAL OF ALGEBRA, 2023, 614 : 780 - 805
  • [5] Construction process for simple Lie algebras
    Achab, Dehbia
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 186 - 204
  • [6] A Simple Proof of Lie's Theorem
    Burichenko, Vladimir P.
    JOURNAL OF LIE THEORY, 2018, 28 (02) : 577 - 579
  • [7] A product theorem in simple Lie groups
    de Saxce, Nicolas
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (03) : 915 - 941
  • [8] Canonical structure constants for simple Lie algebras
    Geck, Meinolf
    Lang, Alexander
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024,
  • [9] Group gradings on simple Lie algebras of type "A"
    Bahturin, Yuri
    Zaicev, Mikhail
    JOURNAL OF LIE THEORY, 2006, 16 (04) : 719 - 742
  • [10] N-commultators for simple Lie algebras
    Dzhumadil'daev, A. S.
    XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 159 - 168