On Hom-pre-Poisson algebras

被引:2
作者
Liu, Shanshan [1 ]
Makhlouf, Abdenacer [2 ]
Song, Lina [3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Univ Haute Alsace, Dept Math, IRIMAS, Mulhouse, France
[3] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Hom-pre-Poisson algebra; Hom-pre-Gerstenhaber algebra; Dual-Hom-pre-Poisson algebra; Hom-average-operator; F-MANIFOLD ALGEBRAS; LIE-ALGEBRAS; DEFORMATIONS; COHOMOLOGY; PRODUCT;
D O I
10.1016/j.geomphys.2023.104855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we discuss Hom-pre-Poisson algebras and their relationships with Hom-Poisson algebra. Then we introduce the notion of a Hom-pre-Gerstenhaber algebra and show that a Hom-pre-Gerstenhaber algebra gives rise to a Hom-Gerstenhaber algebra. Moreover, we consider Hom-dendriform formal deformations of Hom-zinbiel algebras and show that Hom-pre-Poisson algebras are the corresponding semi-classical limits. Furthermore, we consider Hom-O-operators on Hom-Poisson algebras and study their relationships with Hom-pre-Poisson algebras. Finally, we define the notion of dual-Hom-pre-Poisson algebra and show that a Hom-average-operator on a Hom-Poisson algebra naturally gives rise to a dual-Hom-pre-Poisson algebra. (c) 2023 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 25 条
  • [1] Pre-Poisson algebras
    Aguiar, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) : 263 - 277
  • [2] Ammar F, 2011, J LIE THEORY, V21, P813
  • [3] Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation
    Bai, Chengming
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 221 - 260
  • [4] On Hom-F-manifold algebras and quantization
    Ben Hassine, Abdelkader
    Chtioui, Taoufik
    Maalaoui, Mohamed Ali
    Mabrouk, Sami
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1153 - 1176
  • [5] Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
    Benayadi, Said
    Makhlouf, Abdenacer
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 38 - 60
  • [6] Burde D., 2006, Cent. Eur. J. Math., V4, P323
  • [7] Purely Hom-Lie bialgebras
    Cai, Liqiang
    Sheng, Yunhe
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1553 - 1566
  • [8] Deformations of Lie algebras using σ-derivations
    Hartwig, JT
    Larsson, D
    Silvestrov, SD
    [J]. JOURNAL OF ALGEBRA, 2006, 295 (02) : 314 - 361
  • [9] Hom-Lie algebroids
    Laurent-Gengoux, Camille
    Teles, Joana
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 68 : 69 - 75
  • [10] F-manifold algebras and deformation quantization via pre-Lie algebras
    Liu, Jiefeng
    Sheng, Yunhe
    Bai, Chengming
    [J]. JOURNAL OF ALGEBRA, 2020, 559 : 467 - 495