RepCPSI: Coordinate-Preserving Proximity Spectral Interaction Network With Reparameterization for Lightweight Spectral Super-Resolution

被引:8
作者
Wu, Chaoxiong [1 ]
Li, Jiaojiao [1 ,2 ]
Song, Rui [1 ]
Li, Yunsong [1 ]
Du, Qian [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Image reconstruction; Computational modeling; Correlation; Runtime; Benchmark testing; Adaptation models; Training; Coordinate-preserving proximity spectral-aware attention (CPSA); lightweight spectral super-resolution (SSR); polymorphic residual context restructuring (PRCR); reparameterizing coordinate-preserving proximity spectral interaction (RepCPSI); spectral physical consistency loss (SPCL); RECOVERY;
D O I
10.1109/TGRS.2023.3264675
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Existing remarkable models for spectral super-resolution (SSR) achieve higher precision at the expense of computations with larger parameters. These algorithms require the heavy memory footprint and sufficient computing power, limiting their practical deployments and applications on portable devices. In this article, we propose an efficient reparameterizing coordinate-preserving proximity spectral interaction (RepCPSI) network for lightweight SSR. Specifically, the basic architecture is constituted of several polymorphic residual context restructuring (PRCR) modules to fully explore spatial and spectral contextual information with a multibranch topology during the training stage. Using a structural reparameterization scheme, the training-completed network is converted equivalently into a high-efficiency inference-time model, when it runs in the testing phase. To significantly improve the accuracy of SSR with an extra negligible computational overhead, a lightweight coordinate-preserving proximity spectral-aware attention (CPSA) block is developed. Such CPSA block can adaptively emphasize informative signatures and suppress useless ones among intermediate spatial-spectral features, which effectively enables the model to quickly locate features that are beneficial to network learning and representation. Furthermore, considering the continuity of spectral variation for capturing real-world hyperspectral images (HSIs), a spectral physical consistency loss (SPCL) is added to the end-to-end network to constrain the changing trend of the spectral curve to be consistent with the ground-truth objects. Finally, our RepCPSI can accomplish a favorable balance between the reconstructed quality and the model complexity. Extensive experimental results on six benchmarks demonstrate that our method obtains excellent performance with fewer parameters in terms of quantitative and qualitative measurements over the current advanced SSR approaches.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Detection and Analysis of the Intestinal Ischemia Using Visible and Invisible Hyperspectral Imaging [J].
Akbari, Hamed ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (08) :2011-2017
[2]   NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image [J].
Arad, Boaz ;
Timofte, Radu ;
Ben-Shahar, Ohad ;
Lin, Yi-Tun ;
Finlayson, Graham ;
Givati, Shai ;
Li, Jiaojiao ;
Wu, Chaoxiong ;
Song, Rui ;
Li, Yunsong ;
Liu, Fei ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Nie, Jiangtao ;
Zhao, Yuzhi ;
Po, Lai-Man ;
Yan, Qiong ;
Liu, Wei ;
Lin, Tingyu ;
Kim, Youngjung ;
Shin, Changyeop ;
Rho, Kyeongha ;
Kim, Sungho ;
Zhu, Zhiyu ;
Hou, Junhui ;
Sun, He ;
Ren, Jinchang ;
Fang, Zhenyu ;
Yan, Yijun ;
Peng, Hao ;
Chen, Xiaomei ;
Zhao, Jie ;
Stiebel, Tarek ;
Koppers, Simon ;
Merhof, Dorit ;
Gupta, Honey ;
Mitra, Kaushik ;
Fubara, Biebele Joslyn ;
Sedky, Mohamed ;
Dyke, Dave ;
Banerjee, Atmadeep ;
Palrecha, Akash ;
Sabarinathan ;
Uma, K. ;
Vinothini, D. Synthiya ;
Bama, B. Sathya ;
Roomi, S. M. Md Mansoor .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1806-1822
[3]   NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad ;
Timofte, Radu ;
Van Gool, Luc ;
Zhang, Lei ;
Yang, Ming-Hsuan ;
Xiong, Zhiwei ;
Chen, Chang ;
Shi, Zhan ;
Liu, Dong ;
Wu, Feng ;
Lanaras, Charis ;
Galliani, Silvano ;
Schindler, Konrad ;
Stiebel, Tarek ;
Koppers, Simon ;
Seltsam, Philipp ;
Zhou, Ruofan ;
El Helou, Majed ;
Lahoud, Fayez ;
Shahpaski, Marjan ;
Zheng, Ke ;
Gao, Lianru ;
Zhang, Bing ;
Cui, Ximin ;
Yu, Haoyang ;
Can, Yigit Baran ;
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz ;
Galdran, Adrian ;
Sharma, Manoj ;
Koundinya, Sriharsha ;
Upadhyay, Avinash ;
Manekar, Raunak ;
Mukhopadhyay, Rudrabha ;
Sharma, Himanshu ;
Chaudhury, Santanu ;
Nagasubramanian, Koushik ;
Ghosal, Sambuddha ;
Singh, Asheesh K. ;
Singh, Arti ;
Ganapathysubramanian, Baskar ;
Sarkar, Soumik .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1042-1051
[4]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[5]  
Cai Y., 2022, arXiv, DOI DOI 10.48550/ARXIV.2204.07908
[6]  
Cao JM, 2020, Arxiv, DOI arXiv:2006.12030
[7]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[8]  
Chakrabarti A, 2011, PROC CVPR IEEE, P193, DOI 10.1109/CVPR.2011.5995660
[9]   A Taxonomy of External and Internal Attention [J].
Chun, Marvin M. ;
Golomb, Julie D. ;
Turk-Browne, Nicholas B. .
ANNUAL REVIEW OF PSYCHOLOGY, VOL 62, 2011, 62 :73-101
[10]   Diverse Branch Block: Building a Convolution as an Inception-like Unit [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Han, Jungong ;
Ding, Guiguang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10881-10890