A Microbial Cell Coating Based on a Conjugated Polyelectrolyte with Broad Reduction Potential Increases Inward and Outward Extracellular Electron Transfer

被引:9
作者
Quek, Glenn [1 ,2 ]
McCuskey, Samantha R. [1 ,2 ]
Vazquez, Ricardo Javier [1 ,2 ]
Cox-Vazquez, Sarah J. [1 ,2 ]
Bazan, Guillermo C. [1 ,2 ]
机构
[1] Natl Univ Singapore, Inst Funct Intelligent Mat I FIM, Dept Chem & Chem, Singapore 119077, Singapore
[2] Natl Univ Singapore, Inst Funct Intelligent Mat I FIM, Dept Biomol Engn, Singapore 119077, Singapore
关键词
bioelectricity generation; bioelectrochemical systems; conjugated polyelectrolytes; living materials; microbial electrosynthesis; n-type conjugated polymers; Shewanella oneidensis MR-1; TRANSPORT; BIOELECTRICITY; FLAVINS;
D O I
10.1002/aelm.202300019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bioelectrochemical systems hold the promise of enabling sustainable microbial-mediated energy interconversion between electrical and chemical energy. Herein, it is demonstrated how a single conjugated polymer can be used to enhance bidirectional extracellular electron transfer through forming self-assembled coatings on individual cells. Specifically, the n-type conjugated polyelectrolyte p(cNDI-gT2) exhibits a reduction potential window between -0.1 and -0.8 V (vs Ag/AgCl), thereby driving thermodynamically favored electron transfer in both directions across the abiotic-biotic interface that involves the outer membrane cytochromes and flavins of Shewanella oneidensis MR-1. Electrochemical tests show that injection from an external electrode into Shewanella oneidensis MR-1 is enabled at negative potentials (-0.6 V), while electron extraction is possible at positive potentials (0.2 V). Relative to controls, the biohybrid shows a sixfold increase in biocurrent generation and a 35-fold increase in current uptake for the bioelectrosynthesis of succinate from fumarate. This demonstrated abiotic-biotic synergy provides new strategies for designing multifunctional biohybrids.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Real-time bioelectronic sensing of environmental contaminants [J].
Atkinson, Joshua T. ;
Su, Lin ;
Zhang, Xu ;
Bennett, George N. ;
Silberg, Jonathan J. ;
Ajo-Franklin, Caroline M. .
NATURE, 2022, 611 (7936) :548-+
[2]   Fundamentals, Applications, and Future Directions of Bioelectrocatalysis [J].
Chen, Hui ;
Simoska, Olja ;
Lim, Koun ;
Grattieri, Matteo ;
Yuan, Mengwei ;
Dong, Fangyuan ;
Lee, Yoo Seok ;
Beaver, Kevin ;
Weliwatte, Samali ;
Gaffney, Erin M. ;
Minteer, Shelley D. .
CHEMICAL REVIEWS, 2020, 120 (23) :12903-12993
[3]   The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials [J].
Chen, Hui ;
Dong, Fangyuan ;
Minteer, Shelley D. .
NATURE CATALYSIS, 2020, 3 (03) :225-244
[4]   Narrow Band Gap Conjugated Polyelectrolytes [J].
Cui, Qiuhong ;
Bazar, Guillermo C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (01) :202-211
[5]   Shewanella oneidensis as a living electrode for controlled radical polymerization [J].
Fan, Gang ;
Dundas, Christopher M. ;
Graham, Austin J. ;
Lynd, Nathaniel A. ;
Keitz, Benjamin K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (18) :4559-4564
[6]   Strategies for the Targeted Improvement of Anodic Electron Transfer in Microbial Fuel Cells [J].
Heydorn, Raymond Leopold ;
Engel, Christina ;
Krull, Rainer ;
Dohnt, Katrin .
CHEMBIOENG REVIEWS, 2020, 7 (01) :4-17
[7]   Anaerobic Respiration on Self-Doped Conjugated Polyelectrolytes: Impact of Chemical Structure [J].
Kirchhofer, Nathan D. ;
McCuskey, Samantha R. ;
Mai, Cheng-Kang ;
Bazan, Guillermo C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (23) :6519-6522
[8]   A Ferrocene-Based Conjugated Oligoelectrolyte Catalyzes Bacterial Electrode Respiration [J].
Kirchhofer, Nathan D. ;
Rengert, Zachary D. ;
Dahlquist, Frederick W. ;
Thuc-Quyen Nguyen ;
Bazan, Guillermo C. .
CHEM, 2017, 2 (02) :240-257
[9]   Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts [J].
Li, Shuang ;
Cheng, Chong ;
Thomas, Arne .
ADVANCED MATERIALS, 2017, 29 (08)
[10]   Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies [J].
Logan, Bruce E. ;
Rabaey, Korneel .
SCIENCE, 2012, 337 (6095) :686-690