Meta-Reweighted Regularization for Unsupervised Domain Adaptation

被引:9
|
作者
Li, Shuang [1 ]
Ma, Wenxuan [1 ]
Zhang, Jinming [1 ]
Liu, Chi Harold [1 ]
Liang, Jian [2 ]
Wang, Guoren [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[2] Alibaba Grp, AI Int Dept, Beijing 100102, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Noise measurement; Training; Adversarial machine learning; Predictive models; Data models; Task analysis; Domain adaptation; meta learning; adversarial learning; self training; sample reweighting; FRAMEWORK;
D O I
10.1109/TKDE.2021.3114536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg.
引用
收藏
页码:2781 / 2795
页数:15
相关论文
共 50 条
  • [21] Adversarial Entropy Optimization for Unsupervised Domain Adaptation
    Ma, Ao
    Li, Jingjing
    Lu, Ke
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6263 - 6274
  • [22] Meta-learning for efficient unsupervised domain adaptation
    Vettoruzzo, Anna
    Bouguelia, Mohamed-Rafik
    Roegnvaldsson, Thorsteinn
    NEUROCOMPUTING, 2024, 574
  • [23] A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
    Zhao, Sicheng
    Yue, Xiangyu
    Zhang, Shanghang
    Li, Bo
    Zhao, Han
    Wu, Bichen
    Krishna, Ravi
    Gonzalez, Joseph E.
    Sangiovanni-Vincentelli, Alberto L.
    Seshia, Sanjit A.
    Keutzer, Kurt
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 473 - 493
  • [24] DFA: Decoupling Feature Alignment for Unsupervised Domain Adaptation
    Wen, Zhongyi
    Li, Qiang
    Wang, Yatong
    Xu, Luyan
    Shao, Huaizong
    Sun, Guomin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33151 - 33163
  • [25] DCL: Dipolar Confidence Learning for Source-Free Unsupervised Domain Adaptation
    Tian, Qing
    Sun, Heyang
    Peng, Shun
    Zheng, Yuhui
    Wan, Jun
    Lei, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4342 - 4353
  • [26] Complementary Pseudo Labels for Unsupervised Domain Adaptation On Person Re-Identification
    Feng, Hao
    Chen, Minghao
    Hu, Jinming
    Shen, Dong
    Liu, Haifeng
    Cai, Deng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2898 - 2907
  • [27] Adversarial Unsupervised Domain Adaptation for Hand Gesture Recognition Using Thermal Images
    Dayal, Aveen
    Aishwarya, M.
    Abhilash, S.
    Mohan, C. Krishna
    Kumar, Abhinav
    Cenkeramaddi, Linga Reddy
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3493 - 3504
  • [28] Gradient Harmonization in Unsupervised Domain Adaptation
    Huang, Fuxiang
    Song, Suqi
    Zhang, Lei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10319 - 10336
  • [29] Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain
    Ren, Chuan-Xian
    Liu, Yong-Hui
    Zhang, Xi-Wen
    Huang, Ke-Kun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2122 - 2135
  • [30] Soft Warping Based Unsupervised Domain Adaptation for Stereo Matching
    Zhang, Haoyuan
    Chau, Lap-Pui
    Wang, Danwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3835 - 3846