Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses

被引:10
|
作者
Romero-Munar, Antonia [1 ]
Aroca, Ricardo [1 ]
Zamarreno, Angel Maria [2 ]
Garcia-Mina, Jose Maria [2 ]
Perez-Hernandez, Noelia [1 ,3 ]
Ruiz-Lozano, Juan Manuel [1 ]
机构
[1] Estn Expt Zaidin CSIC, Dept Microbiol Suelo & Sistemas Simbiot, Prof Albareda 1, Granada 18008, Spain
[2] Univ Navarra, Fac Ciencias, Departmento Biol Ambiental, Irunlarrea 1, Pamplona 31008, Spain
[3] Estn Biol Donana CSIC, Avd Americo Vespucio 26, Seville 41092, Spain
关键词
aquaporin; arbuscular mycorrhiza; combined drought and heat stress; maize; PGPR; root hydraulic conductivity; ARBUSCULAR MYCORRHIZAL SYMBIOSIS; PLASMA-MEMBRANE AQUAPORINS; GENE-EXPRESSION; PLANT-GROWTH; WATER TRANSPORT; ABSCISIC-ACID; FUNGUS; COMBINATION; BACTERIA; CELL;
D O I
10.3390/ijms24065193
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.
引用
收藏
页数:22
相关论文
empty
未找到相关数据