Unsupervised Transformer-Based Anomaly Detection in ECG Signals

被引:15
|
作者
Alamr, Abrar [1 ]
Artoli, Abdelmonim [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Comp Sci Dept, Riyadh 11543, Saudi Arabia
关键词
unsupervised transformers; deep learning; anomaly detection; ECG signal; TIME-SERIES;
D O I
10.3390/a16030152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is one of the basic issues in data processing that addresses different problems in healthcare sensory data. Technology has made it easier to collect large and highly variant time series data; however, complex predictive analysis models are required to ensure consistency and reliability. With the rise in the size and dimensionality of collected data, deep learning techniques, such as autoencoder (AE), recurrent neural networks (RNN), and long short-term memory (LSTM), have gained more attention and are recognized as state-of-the-art anomaly detection techniques. Recently, developments in transformer-based architecture have been proposed as an improved attention-based knowledge representation scheme. We present an unsupervised transformer-based method to evaluate and detect anomalies in electrocardiogram (ECG) signals. The model architecture comprises two parts: an embedding layer and a standard transformer encoder. We introduce, implement, test, and validate our model in two well-known datasets: ECG5000 and MIT-BIH Arrhythmia. Anomalies are detected based on loss function results between real and predicted ECG time series sequences. We found that the use of a transformer encoder as an alternative model for anomaly detection enables better performance in ECG time series data. The suggested model has a remarkable ability to detect anomalies in ECG signal and outperforms deep learning approaches found in the literature on both datasets. In the ECG5000 dataset, the model can detect anomalies with 99% accuracy, 99% F1-score, 99% AUC score, 98.1% recall, and 100% precision. In the MIT-BIH Arrhythmia dataset, the model achieved an accuracy of 89.5%, F1 score of 92.3%, AUC score of 93%, recall of 98.2%, and precision of 87.1%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Transformer-Based Method for Unsupervised Anomaly Detection of Flight Data
    Yu, Hao
    Wu, Honglan
    Sun, Youchao
    Liu, Hao
    2023 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, VOL I, APISAT 2023, 2024, 1050 : 1816 - 1826
  • [2] An Unsupervised Method for Industrial Image Anomaly Detection with Vision Transformer-Based Autoencoder
    Yang, Qiying
    Guo, Rongzuo
    SENSORS, 2024, 24 (08)
  • [3] A Transformer-Based GAN for Anomaly Detection
    Yang, Caiyin
    Lan, Shiyong
    Huangl, Weikang
    Wang, Wenwu
    Liul, Guoliang
    Yang, Hongyu
    Ma, Wei
    Li, Piaoyang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 345 - 357
  • [4] Unsupervised Anomaly Detection in Multivariate Time Series through Transformer-based Variational Autoencoder
    Zhang, Hongwei
    Xia, Yuanqing
    Yan, Tijin
    Liu, Guiyang
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 281 - 286
  • [5] Transformer-Based Spatio-Temporal Unsupervised Traffic Anomaly Detection in Aerial Videos
    Tung Minh Tran
    Bui, Doanh C.
    Nguyen, Tam V.
    Khang Nguyen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8292 - 8309
  • [6] AnoViT: Unsupervised Anomaly Detection and Localization With Vision Transformer-Based Encoder-Decoder
    Lee, Yunseung
    Kang, Pilsung
    IEEE ACCESS, 2022, 10 : 46717 - 46724
  • [7] A transformer-based deep neural network for arrhythmia detection using continuous ECG signals
    Hu, Rui
    Chen, Jie
    Zhou, Li
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [8] TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection
    Guo, Zehao
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 269 - 284
  • [9] Siamese comparative transformer-based network for unsupervised landmark detection
    Zhao, Can
    Wu, Tao
    Zhang, Jianlin
    Xu, Zhiyong
    Li, Meihui
    Liu, Dongxu
    PLOS ONE, 2024, 19 (12):
  • [10] Transformer-based contrastive learning framework for image anomaly detection
    Fan, Wentao
    Shangguan, Weimin
    Chen, Yewang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3413 - 3426