Topological entropy of induced circle maps on hyperspaces

被引:0
作者
Ju, Hyonhui [1 ]
Kim, Cholsan [1 ]
Ri, Songhun [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Circle map; -Limit set; Topological entropy; Hyperspace; Set-valued extension; TRANSITIVITY; DYNAMICS; CHAOS;
D O I
10.1016/j.topol.2023.108460
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show on some aspects of the structures of omega-limit sets set-valued extensions of continuous circle maps. Next, we prove that topological entropies of every circle map and its set-valued extension agree.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 14 条
[1]   The transitivity of induced maps [J].
Acosta, Gerardo ;
Illanes, Alejandro ;
Mendez-Lango, Hector .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (05) :1013-1033
[2]   Chaos for induced hyperspace maps [J].
Banks, J .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :681-685
[3]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[4]   On the topological entropy on the space of fuzzy numbers [J].
Canovas, Jose S. ;
Kupka, Jiri .
FUZZY SETS AND SYSTEMS, 2014, 257 :132-145
[5]   Dynamics and topological entropy for Zadeh's extension of a compact system [J].
Kim, Cholsan ;
Chen, Minghao ;
Ju, Hyonhui .
FUZZY SETS AND SYSTEMS, 2017, 319 :93-103
[6]   On fuzzifications of discrete dynamical systems [J].
Kupka, Jiri .
INFORMATION SCIENCES, 2011, 181 (13) :2858-2872
[7]   Topological entropy and chaos for maps induced on hyperspaces [J].
Kwietniak, Dominik ;
Oprocha, Piotr .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :76-86
[8]   Topological entropy for set valued maps [J].
Lampart, Marek ;
Raith, Peter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) :1533-1537
[9]   Sensitivity of set-valued discrete systems [J].
Liu, Heng ;
Shi, Enhui ;
Liao, Gongfu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :6122-6125
[10]   The structure of graph maps without periodic points [J].
Mai, Jie-Hua ;
Shao, Song .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (14) :2714-2728