Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing

被引:3
作者
de Paulo, Rodrigo Leme [1 ]
Garcia, Angel Pontin [1 ]
Umezu, Claudio Kiyoshi [1 ]
de Camargo, Antonio Pires [1 ]
Soares, Fabricio Theodoro [1 ]
Albiero, Daniel [1 ]
机构
[1] Univ Estadual Campinas, Sch Agr Engn, BR-13083875 Campinas, Brazil
基金
巴西圣保罗研究基金会;
关键词
water stress; precision irrigation; non-water-stressed baseline; soil moisture; infra-red sensor; CANOPY TEMPERATURE; THERMAL IMAGERY; CROP; CWSI; THERMOGRAPHY; SOIL;
D O I
10.3390/s23031318
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.
引用
收藏
页数:21
相关论文
共 43 条