共 50 条
Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK
被引:25
|作者:
Xie, Zhijuan
[1
]
Tang, Jun
[2
]
Chen, Zhong
[3
]
Wei, Lanji
[4
]
Chen, Jianying
[5
]
Liu, Qin
[1
]
机构:
[1] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Nephrol, 69 Chuanshan Rd, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Emergency, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Nucl Med, Hengyang 421001, Hunan, Peoples R China
[4] Univ South China, Affiliated Nanhua Hosp, Hlth Management Ctr, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[5] Hunan Prov Mawangdui Hosp, Dept Rheumatol & Immunol, Changsha 410016, Hunan, Peoples R China
关键词:
Acute kidney injury;
Bone marrow mesenchymal stem cells;
MicroRNA-223-3p;
HDAC2;
SNRK;
Inflammation;
Pyroptosis;
EXOSOMES;
PATHWAY;
HDAC2;
AXIS;
SNRK;
D O I:
10.1007/s00011-022-01653-4
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
ObjectiveBone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated as a potential therapeutic agent in acute kidney injury (AKI). However, little is known about the mechanisms of action of BMSC-derived EVs in AKI. Based on this, our research was designed to investigate the mechanism behind BMSC-derived EVs controlling inflammation and pyroptosis during AKI.MethodsPeripheral blood from AKI patients was used for detection of microRNA (miR)-223-3p, HDAC2, and SNRK expression. An AKI rat model was established, and HK-2 cell injury was induced by lipopolysaccharide (LPS) to establish a cellular model. Co-culture with BMSC-derived EVs and/or gain- and loss-of-function assays were conducted in LPS-treated HK-2 to evaluate the functions of BMSCs-EVs, miR-223-3p, HDAC2, and SNRK. AKI rats were simultaneously injected with EVs and short hairpin RNAs targeting SNRK. The interactions among miR-223-3p, HDAC2, and SNRK were evaluated by RIP, ChIP, and dual-luciferase gene reporter assays.ResultsPatients with AKI had low miR-223-3p and SNRK expression and high HDAC2 expression in peripheral blood. Mechanistically, miR-223-3p targeted HDAC2 to accelerate SNRK transcription. In LPS-treated HK-2 cells, BMSCs-EVs overexpressing miR-223-3p increased cell viability and diminished cell apoptosis, KIM-1, LDH, IL-1 beta, IL-6, TNF-alpha, NLRP3, ASC, cleaved caspase-1, and IL-18 expression, and GSDMD cleavage, which was nullified by HDAC2 overexpression or SNRK silencing. In AKI rats, BMSCs-EV-shuttled miR-223-3p reduced CRE and BUN levels, apoptosis, inflammation, and pyroptosis, which was abrogated by SNRK silencing.ConclusionConclusively, BMSC-derived EV-encapsulated miR-223-3p mitigated AKI-induced inflammation and pyroptosis by targeting HDAC2 and promoting SNRK transcription.
引用
收藏
页码:553 / 576
页数:24
相关论文