Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK

被引:25
|
作者
Xie, Zhijuan [1 ]
Tang, Jun [2 ]
Chen, Zhong [3 ]
Wei, Lanji [4 ]
Chen, Jianying [5 ]
Liu, Qin [1 ]
机构
[1] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Nephrol, 69 Chuanshan Rd, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Emergency, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Nucl Med, Hengyang 421001, Hunan, Peoples R China
[4] Univ South China, Affiliated Nanhua Hosp, Hlth Management Ctr, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[5] Hunan Prov Mawangdui Hosp, Dept Rheumatol & Immunol, Changsha 410016, Hunan, Peoples R China
关键词
Acute kidney injury; Bone marrow mesenchymal stem cells; MicroRNA-223-3p; HDAC2; SNRK; Inflammation; Pyroptosis; EXOSOMES; PATHWAY; HDAC2; AXIS; SNRK;
D O I
10.1007/s00011-022-01653-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
ObjectiveBone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated as a potential therapeutic agent in acute kidney injury (AKI). However, little is known about the mechanisms of action of BMSC-derived EVs in AKI. Based on this, our research was designed to investigate the mechanism behind BMSC-derived EVs controlling inflammation and pyroptosis during AKI.MethodsPeripheral blood from AKI patients was used for detection of microRNA (miR)-223-3p, HDAC2, and SNRK expression. An AKI rat model was established, and HK-2 cell injury was induced by lipopolysaccharide (LPS) to establish a cellular model. Co-culture with BMSC-derived EVs and/or gain- and loss-of-function assays were conducted in LPS-treated HK-2 to evaluate the functions of BMSCs-EVs, miR-223-3p, HDAC2, and SNRK. AKI rats were simultaneously injected with EVs and short hairpin RNAs targeting SNRK. The interactions among miR-223-3p, HDAC2, and SNRK were evaluated by RIP, ChIP, and dual-luciferase gene reporter assays.ResultsPatients with AKI had low miR-223-3p and SNRK expression and high HDAC2 expression in peripheral blood. Mechanistically, miR-223-3p targeted HDAC2 to accelerate SNRK transcription. In LPS-treated HK-2 cells, BMSCs-EVs overexpressing miR-223-3p increased cell viability and diminished cell apoptosis, KIM-1, LDH, IL-1 beta, IL-6, TNF-alpha, NLRP3, ASC, cleaved caspase-1, and IL-18 expression, and GSDMD cleavage, which was nullified by HDAC2 overexpression or SNRK silencing. In AKI rats, BMSCs-EV-shuttled miR-223-3p reduced CRE and BUN levels, apoptosis, inflammation, and pyroptosis, which was abrogated by SNRK silencing.ConclusionConclusively, BMSC-derived EV-encapsulated miR-223-3p mitigated AKI-induced inflammation and pyroptosis by targeting HDAC2 and promoting SNRK transcription.
引用
收藏
页码:553 / 576
页数:24
相关论文
共 50 条
  • [1] Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK
    Zhijuan Xie
    Jun Tang
    Zhong Chen
    Lanji Wei
    Jianying Chen
    Qin Liu
    Inflammation Research, 2023, 72 : 553 - 576
  • [2] Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223-3p/NLRP3 axis
    Hou, Lin
    Zhu, Zhonghui
    Jiang, Fuyang
    Zhao, Jing
    Jia, Qiyue
    Jiang, Qiyue
    Wang, Hongwei
    Xue, Wenming
    Wang, Yan
    Tian, Lin
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 251
  • [3] Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of miR-27a-3p*
    Wang, Jiangmei
    Huang, Ruoqiong
    Xu, Qi
    Zheng, Guoping
    Qiu, Guanguan
    Ge, Menghua
    Shu, Qiang
    Xu, Jianguo
    CRITICAL CARE MEDICINE, 2020, 48 (07) : E599 - E610
  • [4] Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapeutic Strategy for Acute Kidney Injury
    Li, Jia-Kun
    Yang, Cheng
    Su, Ying
    Luo, Jing-Chao
    Luo, Ming-Hao
    Huang, Dan-Lei
    Tu, Guo-Wei
    Luo, Zhe
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [5] Exosomal miR-223-3p from bone marrow mesenchymal stem cells targets HDAC2 to downregulate STAT3 phosphorylation to alleviate HBx-induced ferroptosis in podocytes
    Chen, Yueqi
    Yang, Xiaoqian
    Feng, Moxuan
    Yu, Yani
    Hu, Yongzheng
    Jiang, Wei
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [6] Bone marrow mesenchymal stem cell-derived extracellular vesicles repair articular cartilage injury via the p38-MAPK pathway
    Song, Pengyu
    Xiang, Jifeng
    Luo, Shuaihong
    Tian, Mian
    Liu, Tao
    Yang, Jia
    MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH, 2022, 34 (02): : 61 - 70
  • [7] Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN
    Zhang, Jing
    Gao, Juan
    Li, Xianlong
    Lin, Dengna
    Li, Zhihui
    Wang, Jialei
    Chen, Junfeng
    Gao, Zhiliang
    Lin, Bingliang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [8] Extracellular vesicles from induced pluripotent stem cell-derived mesenchymal stem cells enhance the recovery of acute kidney injury
    Hong, Sungok
    Kim, Hongduk
    Kim, Jimin
    Kim, Soo
    Park, Tae Sub
    Kim, Tae Min
    CYTOTHERAPY, 2024, 26 (01) : 51 - 62
  • [9] Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression
    Li, Fang
    Zhang, Jie
    Liao, Rui
    Duan, Yongchun
    Tao, Lili
    Xu, Yuwei
    Chen, Anbao
    MOLECULAR MEDICINE REPORTS, 2020, 22 (05) : 3813 - 3821
  • [10] The effects of Klotho delivering mesenchymal stem cell-derived small extracellular vesicles on acute kidney injury
    Xiao-Hui Deng
    Zi-Cong Wu
    Qi Sun
    Long-Xin Huang
    Ying-Chun Xie
    Dong-Xiao Lou
    Chan-Gu Li
    Xiao-Qing Liu
    Zhi-Rou Zhou
    Tian Tian
    Chang-Lin Lian
    Qing-Ling Fu
    Journal of Nanobiotechnology, 23 (1)