Solid-State NMR Study on the Structure and Dynamics of Graphite Electrodes in Sodium-Ion Batteries with Solvent Co-Intercalation

被引:15
作者
Escher, Ines [1 ]
Freytag, Annica I. [2 ]
del Amo, Juan Miguel Lopez [3 ]
Adelhelm, Philipp [1 ,2 ]
机构
[1] Humboldt Univ, Inst Chem, Brook Taylor Str 2, D-12489 Berlin, Germany
[2] Helmholtz Zentrum Berlin, Joint Res Grp Operando Battery Anal, Hahn Meitner Platz 1, D-14109 Berlin, Germany
[3] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies C energiGUNE, Alava Technol Pk, Albert Einstein 48, Vitoria 01510, Spain
基金
欧洲研究理事会;
关键词
co-intercalation; electrochemistry; graphite; sodium-ion battery; solid-state NMR spectroscopy; CYCLE LIFE; NA; ANODES; BEHAVIOR; LITHIUM; GLYMES;
D O I
10.1002/batt.202200421
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The possibility to co-intercalate sodium ions together with various glymes in graphite enables its use as a negative electrode material in sodium-ion batteries (SIBs). However, the storage mechanism and local interactions appearing during this reaction still needs further clarification. H-1, C-13 and Na-23 ex situ solid-state NMR (ss-NMR) experiments are performed to obtain insights into the storage mechanism depending on the state of charge (SOC) and the electrolyte solvent used. Distinct differences could be seen depending on the SOC, indicating a possible change of the solvation shell, differences in the mobility as well as a phase transition at the voltage plateau. Furthermore, exchange experiments reveal information on the sodium ion transport process in the graphitic lattice. The inferior cycling performance of triglyme (3G) (compared to diglyme (2G) and pentaglyme (5G)) is also reflected in the ss-NMR spectra, showing a reduced mobility and stronger interactions between sodium ions, 3G and graphite already at room temperature (RT).
引用
收藏
页数:10
相关论文
共 47 条
[1]   From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries [J].
Adelhelm, Philipp ;
Hartmann, Pascal ;
Bender, Conrad L. ;
Busche, Martin ;
Eufinger, Christine ;
Janek, Juergen .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :1016-1055
[2]  
[Anonymous], 2018, ANGEW CHEM, V130, P106
[3]  
[Anonymous], 2014, ANGEW CHEM, V126, P10333
[4]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[5]  
Bruno T.J., 2014, CRC HDB CHEM PHYS
[6]   Nucleus-independent chemical shifts (NICS) as an aromaticity criterion [J].
Chen, ZF ;
Wannere, CS ;
Corminboeuf, C ;
Puchta, R ;
Schleyer, PV .
CHEMICAL REVIEWS, 2005, 105 (10) :3842-3888
[7]   Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene [J].
Cohn, Adam P. ;
Share, Keith ;
Carter, Rachel ;
Oakes, Landon ;
Pint, Cary L. .
NANO LETTERS, 2016, 16 (01) :543-548
[8]   Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodium-Ion Batteries Followed by In Situ Electrochemical Dilatometry [J].
Escher, Ines ;
Kravets, Yuliia ;
A. Ferrero, Guillermo ;
Goktas, Mustafa ;
Adelhelm, Philipp .
ENERGY TECHNOLOGY, 2021, 9 (03)
[9]   Recent Advances in Sodium-Ion Battery Materials [J].
Fang, Yongjin ;
Xiao, Lifen ;
Chen, Zhongxue ;
Ai, Xinping ;
Cao, Yuliang ;
Yang, Hanxi .
ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (03) :294-323
[10]   In Situ Magic-Angle Spinning 7Li NMR Analysis of a Full Electrochemical Lithium-Ion Battery Using a Jelly Roll Cell Design [J].
Freytag, Annica I. ;
Pauric, Allen D. ;
Krachkovskiy, Sergey A. ;
Goward, Gillian R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (35) :13758-13761