Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machine learning

被引:10
作者
Amitai, Tamar [1 ]
Kan-Tor, Yoav [1 ,2 ]
Or, Yuval [3 ]
Shoham, Zeev [3 ]
Shofaro, Yoel [4 ]
Richter, Dganit [5 ,6 ]
Har-Vardi, Iris [5 ,6 ]
Ben-Meir, Assaf [7 ,8 ]
Srebnik, Naama [9 ,10 ]
Buxboim, Amnon [1 ,9 ,11 ]
机构
[1] Hebrew Univ Jerusalem, Rachel & Selim Benin Sch Comp Sci & Engn, Edmond J Safra Campus, IL-9190416 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Ctr Interdisciplinary Data Sci Res, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
[3] Kaplan Hosp, Dept Obstet & Gynecol, Div Reprod Endocrinol & Infertil, Rehovot, Israel
[4] Beilinson Med Ctr, Helen Schneider Hosp Women, Rabin Med Ctr, Infertil & IVF Unit, Petah Tiqwa, Israel
[5] Soroka Univ Med Ctr, IVF Unit Gyn Obs, Beer Sheva, Israel
[6] Ben Gurion Univ Negev, Fac Hlth Sci, Beer Sheva, Israel
[7] Hebrew Univ Jerusalem, Hadassah Med Ctr, Dept Obstet & Gynecol, Jerusalem, Israel
[8] Hadassah Hebrew Univ Hosp, Infertil & IVF Unit, Jerusalem, Israel
[9] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
[10] Shaare Zedek Med Ctr, Dept Obstet & Gynecol, In Vitro Fertilizat Unit, IL-9103102 Jerusalem, Israel
[11] Hebrew Univ Jerusalem, Alexender Grass Ctr Bioengn, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
Embryo miscarriage; IVF; Machine learning; Prediction model; CHROMOSOMAL-ABNORMALITIES; ARTIFICIAL-INTELLIGENCE; PRONUCLEAR MORPHOLOGY; BLASTOCYST FORMATION; MATERNAL AGE; FETAL LOSS; ALGORITHM; SELECTION; ZYGOTES; MODEL;
D O I
10.1007/s10815-022-02619-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose First trimester miscarriage is a major concern in IVF-ET treatments, accounting for one out of nine clinical pregnancies and for up to one out of three recognized pregnancies. To develop a machine learning classifier for predicting the risk of cleavage-stage embryos to undergo first trimester miscarriage based on time-lapse images of preimplantation development. Methods Retrospective study of a 4-year multi-center cohort of 391 women undergoing intra-cytoplasmatic sperm injection (ICSI) and fresh single or double embryo transfers. The study included embryos with positive indication of clinical implantation based on gestational sac visualization either with first trimester miscarriage or live-birth outcome. Miscarriage was determined based on negative fetal heartbeat indication during the first trimester. Data were recorded and obtained in hospital setting and research was performed in university setting. Results A minimal subset of six non-redundant morphodynamic features were screened that maintained high prediction capacity. Features that account for the distribution of the nucleolus precursor bodies within the small pronucleus and pronuclei dynamics were highly predictive of miscarriage outcome as evaluated using the SHapley Additive exPlanations (SHAP) methodology. Using this feature subset, XGBoost and random forest models were trained following a 100-fold Monte-Carlo cross validation scheme. Miscarriage was predicted with AUC 0.68 to 0.69. Conclusion We report the development of a decision-support tool for identifying the embryos with high risk of miscarriage. Prioritizing embryos for transfer based on their predicted risk of miscarriage in combination with their predicted implantation potential is expected to improve live-birth rates and shorten time-to-pregnancy.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 46 条
  • [1] Infection and fetal loss in the mid-second trimester of pregnancy
    Allanson, Ben
    Jennings, Belinda
    Jacques, Angela
    Charles, Adrian K.
    Keil, Anthony D.
    Dickinson, Jan E.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF OBSTETRICS & GYNAECOLOGY, 2010, 50 (03) : 221 - 225
  • [2] The combination of pronuclear and blastocyst morphology: a strong prognostic tool for implantation potential
    Almeida Ferreira Braga, Daniela Paes
    Setti, Amanda S.
    Figueira, Rita de Cassia S.
    Iaconelli, Assumpto, Jr.
    Borges, Edson, Jr.
    [J]. JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2013, 30 (10) : 1327 - 1332
  • [3] Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology, 2011, Hum Reprod, V26, P1270, DOI 10.1093/humrep/der037
  • [4] The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion
    Penzias A.
    Bendikson K.
    Butts S.
    Coutifaris C.
    Falcone T.
    Fossum G.
    Gitlin S.
    Gracia C.
    Hansen K.
    La Barbera A.
    Mersereau J.
    Odem R.
    Paulson R.
    Pfeifer S.
    Pisarska M.
    Rebar R.
    Reindollar R.
    Rosen M.
    Sandlow J.
    Vernon M.
    Widra E.
    [J]. FERTILITY AND STERILITY, 2018, 109 (03) : 429 - 436
  • [5] Maternal age and fetal loss: population based register Linkage study
    Andersen, AMN
    Wohlfahrt, J
    Christens, P
    Olsen, J
    Melbye, M
    [J]. BRITISH MEDICAL JOURNAL, 2000, 320 (7251) : 1708 - 1712
  • [6] Time-lapse systems for embryo incubation and assessment in assisted reproduction
    Armstrong, Sarah
    Bhide, Priya
    Jordan, Vanessa
    Pacey, Allan
    Farquhar, Cindy
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (05):
  • [7] Bergstra J, 2013, 30th Int Conf Mach Learn, V28, P115, DOI DOI 10.5555/3042817.3042832
  • [8] Human zygote morphological indicators of higher rate of arrest at the first cleavage stage
    Blanes Zamora, Raquel
    Vaca Sanchez, Rebeca
    Gonzalez Perez, Jonay
    Rodriguez Diaz, Rubi
    Baez Quintana, Delia
    Alberto Bethencourt, Jose C.
    [J]. ZYGOTE, 2011, 19 (04) : 339 - 344
  • [9] Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective
    Blank, Celine
    Wildeboer, Rogier Rudolf
    DeCroo, Ilse
    Tilleman, Kelly
    Weyers, Basiel
    de Sutter, Petra
    Mischi, Massimo
    Schoot, Benedictus Christiaan
    [J]. FERTILITY AND STERILITY, 2019, 111 (02) : 318 - 326
  • [10] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794